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SOME RESULTS ON TRANSFORMING %-TRIPLE

by H. W. PU
Texas A & M University

INTRODUCTION

(S, U, @) is said to be a h-triple if a fixed non-empty set S with elements s,
a fixed non-empty family 2 of subsets of S and a fixed non-negative real-valued
set function ¢ on A satisfy the eonditions :

(l) A, Ay € imply AN Axedl,

(i) As, Age A imply that there is a finite, pairwise disjoint subfamily {B;}?_,

n
of U such that Ay — Ay = U B,
i=1
(iii) S is the union of a sequence of sets from I,
(iv) ¢ is superadditive in the sense that ¢(A) > o(Ag) if {A}2 4 is a

-

Il
-

1
n
finite, pairwise disjoint subfamily of U with U A; = A e 9.
i=1
Suppose that we are given a set S; 74 &5, a h-triple (Sp, Up, @2) and a mappping
T: 81— 8, with the property TT-1Ase Uy for each Ase Us. Obviously, the class
Uy = {T-1Az: Ap€ U} satisfies the above conditions (i)-(iii) and a non-negative
real-valued set function ¢; on 9f; can be introduced by setting ¢1(A;) = @a(TA;)
for each Aj € ;. Moreover, @1 can be proved to be superadditive. Hence we may
obtain Hayes integrals, measurable sets, measurable functions on S; and on S
respectively. The purpose of the present paper is to investigate how they are related.
In the sequel, all definitions and notations are found in [1] (numbers in brackets

refer to the bibliography at the end of this paper).

]
L
ﬁ T. HAYES INTEGRALS

In this section, we shall prove that if f: S,— R, then D(f o T, Py) = Do(f, TP1)
for every Pire P(S1) and Doff, Ps) = @y(f o T, T-1Py) for every Ppe P(Sp) with
Pz C TSl.

Lemma I.1. — Tf f: S;— R is non-negative and bounded, then so is foT:
S1—>R, e1(f o T, A1) = oa(f, TA;) for every A;e Uy and ¢y(f o T, T-1Ap) < gaff, Ag)
for every Ags e Us.

Proof. — The first equality follows directly from the definitions for oi(f o T, )
and @a(f, ). Owing to TT-1A;C A;, the second inequality follows easily from the
first equality and monotonity of gaf, ).
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Theorem 1.2. — If f:So— R is non-negative, then so is foT:8—~R and
o}(f o T, P1) = o@y(f, TP1) for every P1€ P(S1). In particular, oi(P1) = @3(TP1).

Proof. — We need only prove this for the case when f:S;—R is bounded,
for the general case follows from the bounded case and (f o T)® = f(m o T, where
(foT)® = (fo T)Am, f® = fAn.

Let {A1;}ic U be any covering for P;. Thus {TAy};C s is a covering for
TP;, and by lemma I.1, we obtain

> afoT, Au) = > ulf, TAw) 2 03(f, TR,

This implies ¢}(fo T, P1) = ¢5(f, TP1). By applying the inequality of lemma I.1g
@(f ©T, P1) < o5(f, TP1) can be obtained similarly. Hence oj(f o T, P1) = @p(f, TP1)-

Corollary 1.3. — Iff: Sg— R, then @;(f o T, P1) = Qu(f, TP1) for every P1 € P(S1)
in the sense that one of them is defined, so is the other and they possess the same
value.

Corollary I.4. — If f: 83— R is non-negative, then @}(f o T, T1P3g) = @yff, Pe)
for every Pz e P(Sq).

Tt should be remarked that @}(f o T, T-1Ps) = gy(f, Pp) for Pae P(Sz) with
Py c TS;. From this we have the following.

Corollary I.5. — If T:8;—S; is onto and f:Sp—R, then @qff, Po) =
@y(f o T, T-1P;) for every Ppe P(Sp) in the sense that one of them is defined, so
is the other and they possess the same value.

II. MEASURABLE SETS AND MEASURABLE FUNCTIONS

We shall consider the classes IM(e1, f°T), Mgpe, f) for every non-negative
function f: 82— R; €(p1, P1), €(p2, TP1) for every Pre P(S1); and F(en, T-1Py),
% (¢2, Pg) for every Pz € P(Sz).

Therorem IT.1. — If f: Sp— R is non-negative, then T I (o1, f o T) € M(ps, f)
and T-10M(pz, f) € M(py, f° T). In particular, TIN(}) c M(py) and T1NM(g;) C
Ni(e3)-

Proof. — We prove the first inclusion only, since the second inclusion can
be obtained analogously. Let E; be any set of IM(e1, fo T), then there are
H; e (), and Ny e P(Sy) such that @i(fo T, Ni) =0 and E; = H; — Ny. Clearly,
TH1 € (2[2)0 C m(tpz,f) TEl C THl — TNl and TE1 C THl imply TE]_ = (THl —TNl)
U (TE1 — (TH]_ — TNl)) and TE1 — (TH1 — TNl) C TH1 — (THl — TNl) C TN1
respectively. By theorem I.2, we have

o3(f, TE1 — (THy — TNy)) = ¢3(f, TN1) = 93(f o T, Ny) = 0.
This implies TE; — (TH; — TNy) € M(¢2, f) and TNy € Mgz, ). Hence TE; € Ni(¢z,f).

Corollary II.2. — If T:8;— S, is onto and f:8a— R is non-negative, then
T NYepr, fo T) = Mgz, f)-

Lemma II.3. — If f: So— R, then Q(f o T, P1) = Q(f, TPy) for every P1 € P(S1)
and Q(f o T, T-1Py) < Q(f, Pp) for every Pa € P(S2).
This lemma follows from definition of Q.



Theorem II.4. — Let P;e P(S;) and f:S;—R. A necessary and sufficient
condition for fo T € €(p1, P1) is f € € (g2, TP1).

Proof. — Necessity is straightforward, and we shall prove sufficiency only.
Let f € (g2, TP1). For ¢ > 0, there is a sequence {Asg:}i € Usp such that U Ag; 5 TPy
and g

2. {92(B0): Q(f, A) 2 ¢} <.
Thus {T-1Ag};c Uy and U T1Ay; 5 Py, By lemmas I.1 and II.3, we have
> {ou(T1Ag): Qf o T, T-1Az) 2 €}
< D {p2(An): Qf o T, T-2Ag;) = €}
= Z {pa(Agi): Qf, Agg) = €} <e.
Hence f o T € €(q1, Py).

Corollary IT.5. — Let Ps€ P(Sp) and f: Sp—> R. If fe @ (¢, P2), then foTe
€ (o1, T1Py).

Proof. — TT-1P,c Py implies (p2, P2) C €(¢p2, TT1Py). Thus the conclusion
follows from theorem II.4.

It should be noted that the converse of corollary IL.5 need not be true.
For example, let 8; = (0, 1], S; = R, Up = {(a, b]: @ < b}, ¢a((@,b]) = b —a and
T:8;— 8z be the inclusion mapping. If f=yr,q2, 3, Where Rq is the set of
rational numbers, then fo T = 0 € C(p1, S1). However f¢ €(qpe, S2).

IOII. CONCLUDING REMARK

Finally, we examine the case when (S, Uz, ¢2) satisfies a further condition (v},
i.e., if Hz S (Q[z)a, then (DZ(XHZ, Sg) = (p;(Hz)

Theorem ITT.1. — If (S;, As, o) satisfies (v), then so does (S;, Uy, ¢1).

Proof. — Let H; e (i), then TH; € (3p),. By hypothesis and theorem I.2,
DQopn, S2) = ¢z(TH1) = i(Hi). Also, we have ym, < yrm, o T. Hence

Q1(ym,, S1) < Qilyrr, o T, 81) = ¢i(xrw, o T, S1)
= ¢3(xrr;; TS1) < @3((rw,, S2) = Palyra,, S2) = ¢1(Hy).
We may assume Hj =.°\°J Aygy, {Aighic Uy and Ay N Ay =& for ¢ £ 5 ([*], lemma
1.6). Thus =
Qu(xm,> S1) = ¢1(xm,, S1) = @i(xm,, Ha) = Z P10¢m,> A1)

= 2, #1(A1) = @i(Hy) (['], theorem 3.5).

Hence (I)l(X_Hl, S1) = ¢3(Hy).

By virtue of [2], for every Ege Ji(¢p;), the class @(¢s, Ea) coincides with the
class of @j-measurable functions on Ey, and for E; € I(e7), the class €(¢1, E1) coin-
cides with the class of ¢]-measurable functions on E;. From this and [2], we obtain
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the following well-known results ([3], pp. 182-183) as direct consequences of
corollaries I.5 and II.5 respectively :
(a) if f is ¢j-measurable on Ege Mp;), then fo T is ¢j-measurable on T-1Es,

(b) for every ¢j-measurable function f on Ep € N(ey),

fE’ Jlps = fT_lE.f o T de;

in the sense that one of them is defined, so is the other and they possess the same
value, if T: S; — Sz is onto.
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