SOME RESULTS ON TRANSFORMING h-TRIPLE

by H. W. PU
Texas A & M University

INTRODUCTION

- $(S, \mathfrak{U}, \varphi)$ is said to be a h-triple if a fixed non-empty set S with elements s, a fixed non-empty family \mathfrak{U} of subsets of S and a fixed non-negative real-valued set function φ on $\mathfrak U$ satisfy the conditions :
 - (i) $A_1, A_2 \in \mathfrak{A}$ imply $A_1 \cap A_2 \in \mathfrak{A}$,
- (ii) $A_1, A_2 \in \mathfrak{U}$ imply that there is a finite, pairwise disjoint subfamily $\{B_i\}_{i=1}^n$ of \mathfrak{U} such that $A_1 A_2 = \bigcup_{i=1}^n B_i$,
 - (iii) S is the union of a sequence of sets from I,
 - (iv) φ is superadditive in the sense that $\varphi(A) \ge \sum_{i=1}^n \varphi(A_i)$ if $\{A_i\}_{i=1}^n$ is a

finite, pairwise disjoint subfamily of \mathfrak{A} with $\bigcup_{i=1}^{n} A_i = A \in \mathfrak{A}$.

Suppose that we are given a set $S_1 \neq \emptyset$, a h-triple $(S_2, \mathfrak{U}_2, \varphi_2)$ and a mappping $T\colon S_1\to S_2$ with the property $TT^{-1}A_2\in \mathfrak{U}_2$ for each $A_2\in \mathfrak{U}_2$. Obviously, the class $\mathfrak{U}_1\equiv \{T^{-1}A_2\colon A_2\in \mathfrak{U}_2\}$ satisfies the above conditions (i)-(iii) and a non-negative real-valued set function φ_1 on \mathfrak{U}_1 can be introduced by setting $\varphi_1(A_1)=\varphi_2(TA_1)$ for each $A_1\in \mathfrak{U}_1$. Moreover, φ_1 can be proved to be superadditive. Hence we may obtain Hayes integrals, measurable sets, measurable functions on S_1 and on S_2 respectively. The purpose of the present paper is to investigate how they are related.

In the sequel, all definitions and notations are found in [1] (numbers in brackets refer to the bibliography at the end of this paper).

I. HAYES INTEGRALS

In this section, we shall prove that if $f: S_2 \to R$, then $\Phi_1(f \circ T, P_1) = \Phi_2(f, TP_1)$ for every $P_1 \in \mathcal{V}(S_1)$ and $\Phi_2(f, P_2) = \Phi_1(f \circ T, T^{-1}P_2)$ for every $P_2 \in \mathcal{V}(S_2)$ with $P_2 \subset TS_1$.

Lemma I.1. — If $f: S_2 \to R$ is non-negative and bounded, then so is $f \circ T: S_1 \to R$, $\varphi_1(f \circ T, A_1) = \varphi_2(f, TA_1)$ for every $A_1 \in \mathfrak{U}_1$ and $\varphi_1(f \circ T, T^{-1}A_2) \leq \varphi_2(f, A_2)$ for every $A_2 \in \mathfrak{U}_2$.

Proof. — The first equality follows directly from the definitions for $\varphi_1(f \circ T,)$ and $\varphi_2(f,)$. Owing to $TT^{-1}A_2 \subset A_2$, the second inequality follows easily from the first equality and monotonity of $\varphi_2(f,)$.

Présenté par H. G. Garnir, le 15 janvier 1970.

Theorem I.2. — If $f: S_2 \to R$ is non-negative, then so is $f \circ T: S_1 \to R$ and $\varphi_1^*(f \circ T, P_1) = \varphi_2^*(f, TP_1)$ for every $P_1 \in \mathcal{P}(S_1)$. In particular, $\varphi_1^*(P_1) = \varphi_2^*(TP_1)$.

Proof. — We need only prove this for the case when $f: S_2 \to R$ is bounded, for the general case follows from the bounded case and $(f \circ T)^{(n)} = f^{(n)} \circ T$, where $(f \circ T)^{(n)} = (f \circ T) \wedge n$, $f^{(n)} = f \wedge n$.

Let $\{A_{1i}\}_i \subset \mathfrak{U}_1$ be any covering for P_1 . Thus $\{TA_{1i}\}_i \subset \mathfrak{U}_2$ is a covering for

TP₁, and by lemma I.1, we obtain

$$\sum_{i} \varphi_{1}(f \circ T, A_{1i}) = \sum_{i} \varphi_{2}(f, TA_{1i}) \geq \varphi_{2}^{*}(f, TP_{1}).$$

This implies $\varphi_1^*(f \circ T, P_1) \ge \varphi_2^*(f, TP_1)$. By applying the inequality of lemma I.1 $\varphi_1^*(f \circ T, P_1) \le \varphi_2^*(f, TP_1)$ can be obtained similarly. Hence $\varphi_1^*(f \circ T, P_1) = \varphi_2^*(f, TP_1)$.

Corollary I.3. — If $f: S_2 \to R$, then $\Phi_1(f \circ T, P_1) = \Phi_2(f, TP_1)$ for every $P_1 \in \mathcal{P}(S_1)$ in the sense that one of them is defined, so is the other and they possess the same value.

Corollary I.4. — If $f: S_2 \to R$ is non-negative, then $\varphi_1^*(f \circ T, T^{-1}P_2) \leq \varphi_2^*(f, P_2)$ for every $P_2 \in \mathcal{P}(S_2)$.

It should be remarked that $\varphi_1^*(f \circ T, T^{-1}P_2) = \varphi_2^*(f, P_2)$ for $P_2 \in \mathcal{P}(S_2)$ with

 $P_2 \subset TS_1$. From this we have the following.

Corollary I.5. — If $T: S_1 \to S_2$ is onto and $f: S_2 \to R$, then $\Phi_2(f, P_2) = \Phi_1(f \circ T, T^{-1}P_2)$ for every $P_2 \in \mathcal{P}(S_2)$ in the sense that one of them is defined, so is the other and they possess the same value.

II. MEASURABLE SETS AND MEASURABLE FUNCTIONS

We shall consider the classes $\mathfrak{M}(\varphi_1, f \circ T)$, $\mathfrak{M}(\varphi_2, f)$ for every non-negative function $f \colon S_2 \to R$; $\mathscr{C}(\varphi_1, P_1)$, $\mathscr{C}(\varphi_2, TP_1)$ for every $P_1 \in \mathfrak{P}(S_1)$; and $\mathscr{C}(\varphi_1, T^{-1}P_2)$, $\mathscr{C}(\varphi_2, P_2)$ for every $P_2 \in \mathfrak{P}(S_2)$.

Theorem II.1. — If $f: S_2 \to \mathbb{R}$ is non-negative, then $T\mathfrak{M}(\varphi_1, f \circ T) \subset \mathfrak{M}(\varphi_2, f)$ and $T^{-1}\mathfrak{M}(\varphi_2, f) \subset \mathfrak{M}(\varphi_1, f \circ T)$. In particular, $T\mathfrak{M}(\varphi_1^*) \subset \mathfrak{M}(\varphi_2^*)$ and $T^{-1}\mathfrak{M}(\varphi_2^*) \subset \mathfrak{M}(\varphi_1^*)$.

Proof. — We prove the first inclusion only, since the second inclusion can be obtained analogously. Let E_1 be any set of $\mathfrak{M}(\varphi_1, f \circ T)$, then there are $H_1 \in (\mathfrak{A}_1)_{\sigma}$ and $N_1 \in \mathfrak{P}(S_1)$ such that $\varphi_1^*(f \circ T, N_1) = 0$ and $E_1 = H_1 - N_1$. Clearly, $TH_1 \in (\mathfrak{A}_2)_{\sigma} \subset \mathfrak{M}(\varphi_2, f)$. $TE_1 \subset TH_1 - TN_1$ and $TE_1 \subset TH_1$ imply $TE_1 = (TH_1 - TN_1) \cup (TE_1 - (TH_1 - TN_1))$ and $TE_1 - (TH_1 - TN_1) \subset TH_1 - (TH_1 - TN_1) \subset TN_1$ respectively. By theorem I.2, we have

 $\phi_2^{\star}(f,\mathrm{TE}_1-(\mathrm{TH}_1-\mathrm{TN}_1)) \leq \phi_2^{\star}(f,\mathrm{TN}_1) = \phi_1^{\star}(f\circ\mathrm{T},\mathrm{N}_1) = 0.$ This implies $\mathrm{TE}_1-(\mathrm{TH}_1-\mathrm{TN}_1) \in \mathfrak{M}(\phi_2,f)$ and $\mathrm{TN}_1 \in \mathfrak{M}(\phi_2,f)$. Hence $\mathrm{TE}_1 \in \mathfrak{M}(\phi_2,f)$.

Corollary II.2. — If $T: S_1 \to S_2$ is onto and $f: S_2 \to R$ is non-negative, then $T \mathfrak{M}(\varphi_1, f \circ T) = \mathfrak{M}(\varphi_2, f)$.

Lemma II.3. — If $f: S_2 \to \mathbb{R}$, then $\Omega(f \circ T, P_1) = \Omega(f, TP_1)$ for every $P_1 \in \mathfrak{P}(S_1)$ and $\Omega(f \circ T, T^{-1}P_2) \leq \Omega(f, P_2)$ for every $P_2 \in \mathfrak{P}(S_2)$.

This lemma follows from definition of Ω .

Theorem II.4. — Let $P_1 \in \mathcal{P}(S_1)$ and $f: S_2 \to \mathbb{R}$. A necessary and sufficient condition for $f \circ T \in \mathcal{C}(\varphi_1, P_1)$ is $f \in \mathcal{C}(\varphi_2, TP_1)$.

Proof. — Necessity is straightforward, and we shall prove sufficiency only. Let $f \in \mathcal{C}(\varphi_2, \operatorname{TP}_1)$. For $\varepsilon > 0$, there is a sequence $\{A_{2i}\}_i \subset \mathfrak{U}_2$ such that $\bigcup A_{2i} \supset \operatorname{TP}_1$ and

$$\sum \{\varphi_2(\mathbf{A}_{2i}) : \Omega(f, \mathbf{A}_{2i}) \ge \varepsilon\} < \varepsilon.$$

Thus $\{T^{-1}A_{2i}\}_i \subset \mathfrak{U}_1$ and $\bigcup T^{-1}A_{2i} \supset P_1$. By lemmas I.1 and II.3, we have

$$\begin{split} & \sum \left\{ \varphi_1(\mathbf{T}^{-1}\mathbf{A}_{2i}) \colon \Omega(f \circ \mathbf{T}, \, \mathbf{T}^{-}_1\mathbf{A}_{2i}) \, \ge \, \epsilon \right\} \\ & \le \sum \left\{ \varphi_2(\mathbf{A}_{2i}) \colon \Omega(f \circ \mathbf{T}, \, \mathbf{T}^{-1}\mathbf{A}_{2i}) \, \ge \, \epsilon \right\} \\ & \le \sum \left\{ \varphi_2(\mathbf{A}_{2i}) \colon \Omega(f, \, \mathbf{A}_{2i}) \, \ge \, \epsilon \right\} \, < \, \epsilon. \end{split}$$

Hence $f \circ T \in \mathscr{C}(\varphi_1, P_1)$.

Corollary II.5. — Let $P_2 \in \mathcal{P}(S_2)$ and $f: S_2 \to R$. If $f \in \mathcal{C}(\varphi_2, P_2)$, then $f \circ T \in \mathcal{C}(\varphi_1, T^{-1}P_2)$.

Proof. — $TT^{-1}P_2 \subset P_2$ implies $\mathscr{C}(\varphi_2, P_2) \subset \mathscr{C}(\varphi_2, TT^{-1}P_2)$. Thus the conclusion follows from theorem II.4.

It should be noted that the converse of corollary II.5 need not be true. For example, let $S_1 = \{0, 1\}$, $S_2 = R$, $\mathfrak{U}_2 = \{(a, b]: a \leq b\}$, $\varphi_2((a, b]) = b - a$ and $T: S_1 \to S_2$ be the inclusion mapping. If $f = \chi_{R_a \cap [2, 3]}$, where R_a is the set of rational numbers, then $f \circ T = 0 \in C(\varphi_1, S_1)$. However $f \notin \mathcal{C}(\varphi_2, S_2)$.

III. CONCLUDING REMARK

Finally, we examine the case when $(S_2, \mathfrak{A}_2, \varphi_2)$ satisfies a further condition (v), i.e., if $H_2 \in (\mathfrak{A}_2)_{\sigma}$, then $\Phi_2(\chi_{H_2}, S_2) = \varphi_2^*(H_2)$.

Theorem III.1. — If $(S_2, \mathcal{U}_2, \phi_2)$ satisfies (v), then so does $(S_1, \mathcal{U}_1, \phi_1)$.

Proof. — Let $H_1 \in (\mathfrak{A}_1)_{\sigma}$, then $TH_1 \in (\mathfrak{A}_2)_{\sigma}$. By hypothesis and theorem I.2, $\Phi_2(\chi_{TH_1}, S_2) = \phi_2^*(TH_1) = \phi_1^*(H_1)$. Also, we have $\chi_{H_1} \leq \chi_{TH_1} \circ T$. Hence

$$\begin{split} &\Phi_1(\chi_{\mathbf{H_1}}, S_1) \leqq \Phi_1(\chi_{\mathbf{TH_1}} \circ T, S_1) = \phi_1^{\bullet}(\chi_{\mathbf{TH_1}} \circ T, S_1) \\ &= \phi_2^{\bullet}(\chi_{\mathbf{TH_1}}, TS_1) \leqq \phi_2^{\bullet}(\chi_{\mathbf{TH_1}}, S_2) = \Phi_2(\chi_{\mathbf{TH_1}}, S_2) = \phi_1^{\bullet}(H_1). \end{split}$$

We may assume $H_1 = \bigcup_{i=1}^{\infty} A_{1i}$, $\{A_{1i}\}_i \subset \mathfrak{U}_1$ and $A_{1i} \cap A_{1j} = \emptyset$ for $i \neq j$ ([1], lemma 1.6). Thus

$$\begin{split} \Phi_1(\chi_{\mathbf{H}_1}, S_1) &= \phi_1^*(\chi_{\mathbf{H}_1}, S_1) \ge \phi_1^*(\chi_{\mathbf{H}_1}, \mathbf{H}_1) = \sum_i \phi_1^*(\chi_{\mathbf{H}_1}, \mathbf{A}_{1i}) \\ &= \sum_i \phi_1^*(\mathbf{A}_{1i}) = \phi_1^*(\mathbf{H}_1) \ ([^1], \ \text{theorem } 3.5). \end{split}$$

Hence $\Phi_1(\chi_{\mathbf{H}_1}, S_1) = \varphi_1^*(\mathbf{H}_1)$.

By virtue of [2], for every $E_2 \in \mathfrak{M}(\phi_2^*)$, the class $\mathscr{C}(\phi_2, E_2)$ coincides with the class of ϕ_2^* -measurable functions on E_2 , and for $E_1 \in \mathfrak{M}(\phi_1^*)$, the class $\mathscr{C}(\phi_1, E_1)$ coincides with the class of ϕ_1^* -measurable functions on E_1 . From this and [2], we obtain

the following well-known results ([3], pp. 182-183) as direct consequences of corollaries I.5 and II.5 respectively:

- (a) if f is φ_2^* -measurable on $E_2 \in \mathfrak{M}(\varphi_2^*)$, then f or T is φ_1^* -measurable on $T^{-1}E_2$,
- (b) for every φ_2^* -measurable function f on $E_2 \in \mathfrak{M}(\varphi_2^*)$,

$$\int_{\mathbf{E_*}} f d \phi_2^* = \int_{\mathbf{T^{-1}E_*}} f \circ \mathbf{T} \ d \phi_1^*$$

in the sense that one of them is defined, so is the other and they possess the same value, if $T: S_1 \to S_2$ is onto.

BILBIOGRAPHY

- [1] Pu, H. W. and Pu, H. H., Contributions to Hayes integral. Bull. Soc. Royale Sciences Liège, 37e année, nº 5-8, 1968, pp. 286-295.
- [2] Pu, H. W. and Pu, H. H., Further properties of Hayes integral. Bull. Soc. Royale Sciences Liège, 37e année, nº 5-8, 1968, pp. 296-300.
- [3] DUNFORD, N. and SCHWARTZ, J. T., Linear operators Part I. New York: Interscience Publishers, Inc., 1958.