NOTE SUR LES CONGRUENCES DE DROITES

(2e PARTIE) (*)

par R. MATHAR (**)

§ 4.

Dans ce paragraphe, nous supposerons que les conditions (\mathscr{C}_{y}^{*}) , (\mathscr{C}_{z}^{*}) , (\mathscr{C}_{η}^{*}) et $(\mathscr{C}_{\overline{z}}^{*})$ sont vérifiées $(\varpi_{1}\varpi_{2}\neq0)$.

13. — Les conditions $(\mathscr{C}_{\bar{z}}^*)$ et $(\mathscr{C}_{\bar{z}}^*)$ peuvent s'écrire

$$\gamma_1^{01} - \gamma_1 \left(\log \frac{\varpi_1}{c_1} \right)^{01} + (mn - \gamma_1) \frac{\varpi_1}{c_1} = 0.$$
 $(\mathscr{C}_{\bar{z}})$

$$m_1^{01} - m_1 \left(\log \frac{\varpi_1}{c_1}\right)^{01} - (c_1 d - m_1) \frac{\varpi_1}{c_1} = 0.$$
 ($\mathscr{C}_{\bar{\xi}}$)

Par différence membre à membre, on obtient, tous calculs effectués

$$(\log \varpi_1 m)^{11} = 0.$$

et, de même,

$$(\log \varpi_2 n)^{11} = 0.$$

Multiplions z par une fonction arbitraire U de la seule variable u et y par une fonction arbitraire V de la seule variable v, puis effectuons la transformation $u=u(u^*),\ v=v(v^*)$. Le système (I) de Wilczynski caractérisant la congruence (yz) conserve la même forme; si l'on marque d'un astérisque les nouveaux coefficients de ce système, on obtient notamment

$$\begin{split} m^* &= m \frac{\mathbf{V}}{\mathbf{U}} \frac{du}{du^*}; \quad n^* = n \frac{\mathbf{U}}{\mathbf{V}} \frac{dv}{dv^*}; \\ c_1^* &= c_1 \frac{\mathbf{U}}{\mathbf{V}} \left(\frac{du}{du^*}\right)^2 \frac{dv^*}{dv}; \quad d^* = d \frac{\mathbf{V}}{\mathbf{U}} \left(\frac{dv}{dv^*}\right)^2 \frac{du^*}{du}; \\ d_1^* &= d_1 \frac{du}{du^*} + \frac{d}{du^*} (\log \mathbf{U}) + \frac{d}{du^*} \left[\log \left(\mathbf{U} \frac{du}{du^*} \right) \right]; \\ c^* &= c \frac{dv}{dv^*} + \frac{d}{dv^*} (\log \mathbf{V}) + \frac{d}{dv^*} \left[\log \left(\mathbf{V} \frac{dv}{dv^*} \right) \right]. \\ \frac{\varpi_1^*}{c_1^*} &= \frac{\partial}{\partial v^*} \left(\log \frac{m^*}{c_1^*} \right) - c^* = \frac{\partial}{\partial v^*} \left(\log \frac{m}{c_1} \right) - c \frac{dv}{dv^*}. \end{split}$$

(*) Voir l'e partie dans Bull. Soc. Roy. des Sciences de Liège, t. 38, 1969, p. 176-181 (**) Présenté par O. Rozet, le 19 février 1970.

$$m^*c_1^* = mc_1 \left(rac{du}{du^*}
ight)^3 rac{dv^*}{dv}$$

et

$$oldsymbol{arpi_1^*} m^* = oldsymbol{arpi_1} m \left(rac{du}{du^*}
ight)^3.$$

Mais $(\log \varpi_1 m)^{11} = 0$ ou $\varpi_1 m = \mathscr{U}_2 \mathscr{V}_2$

où \mathcal{U}_2 et \mathcal{V}_2 désignent respectivement des fonctions arbitraires de u et de v. Il en résulte que par un choix convenable de $u = u(u^*)$, on peut faire en sorte que

$$\varpi_1^* m^* = \mathscr{V}_2$$
 ou $(\varpi_1^* m^*)^{10} = 0$.

Nous supposerons dorénavant qu'il en est ainsi.

De la même manière, on peut montrer que, par un choix convenable de $v=v(v^*)$, on a

$$(\boldsymbol{\varpi}_2 n)^{01} = 0.$$

13bis. — Si $\Phi = \Psi = 0$, les conditions du nº 13 sont remplies et on peut faire en sorte que

$$(\varpi_1 m)^{10} = 0$$
 et $(\varpi_2 n)^{01} = 0$.

Mais, dans ce cas, on a aussi

$$(\varpi_1 m)^{01} = 0$$
 et $(\varpi_2 n)^{10} = 0$.

Les fonctions w_1m et w_2n se réduisent dès lors à des constantes (que l'on peut prendre égales à 1).

14. — Les conditions $(\mathscr{C}_{\overline{z}}^*)$ et $(\mathscr{C}_{\overline{z}}^*)$ entraînent

$$\frac{c_1}{\varpi_1}\left(\frac{\varpi_1}{c_1}\right)^{10} + (\log mc_1)^{10} = \mathscr{U} - \mathscr{U}_1.$$

ou

$$\mathscr{U} = \mathscr{U}_1$$

et, de même,

$$\mathscr{V} = \mathscr{V}_1$$
.

15. — Quand u et v varient, la droite $\bar{y}\bar{z}$ décrit une congruence $(\bar{y}\bar{z})$. Les foyers de la génératrice $\bar{y}\bar{z}$ de cette congruence sont du type $\theta_1\bar{y} + \theta_2\bar{z}$ moyennant

$$\varphi \pi_2 \theta_1^2 - (\varphi \psi + \pi_1 \pi_2 - \gamma_1 \delta_1) \theta_1 \theta_2 + \psi \pi_1 \theta_2^2 = 0.$$

Quant à l'équation différentielle des développables de $(\bar{y}\bar{z})$, elle s'écrit

$$\varphi \gamma_1 du^2 + (\gamma_1 \delta_1 - \varphi \psi - \pi_1 \pi_2) du dv + \psi \delta_1 dv^2 = 0.$$

Sous les conditions nécessaires et suffisantes $\phi=\psi=0$, ces expressions se réduisent respectivement à

$$(\gamma_1\delta_1 - \pi_1\pi_2)\theta_1\theta_2 = 0$$

et

$$(\gamma_1\delta_1 - \pi_1\pi_2)dudv = 0.$$

Si $\gamma_1 \delta_1 - \pi_1 \pi_2 = 0$, la congruence $(\bar{y}\bar{z})$ est à foyers et développables indéterminés.

Nous excluons dorénavant ce cas. La congruence $(\bar{y}\bar{z})$ est, dès lors, rapportée à ses développables et les foyers de sa génératrice $\bar{y}\bar{z}$ sont précisément les points \bar{y} et \bar{z} .

16. — Quand u et v varient, la droite $\overline{\eta}\overline{\xi}$ décrit une congruence $(\overline{\eta}\overline{\xi})$. Les plans focaux de la génératrice $\overline{\eta}\overline{\xi}$ de cette congruence sont du type $\theta_1\overline{\eta} + \theta_2\overline{\xi}$ moyennant $\varpi_2\Phi\theta_1^2 - (\Phi\Psi + \varpi_1\varpi_2 - m_1n_1)\theta_1\theta_2 + \varpi_1\Psi\theta_2^2 = 0$.

Quant à l'équation différentielle des développables de $(\overline{\eta}\overline{\xi})$, elle s'écrit

$$\Phi m_1 du^2 + (\Phi \Psi - \varpi_1 \varpi_2 + m_1 n_1) du dv + n_1 \Psi dv^2 = 0.$$

Sous les conditions nécessaires et suffisantes $\Phi=\Psi=0$, (équivalentes à $\phi=\psi=0$), ces expressions se réduisent respectivement à

$$(m_1n_1-\varpi_1\varpi_2)\theta_1\theta_2=0$$

et

$$(m_1n_1-\varpi_1\varpi_2)dudv=0.$$

Si $m_1n_1 - \overline{w_1w_2} = 0$, la congruence $(\overline{\eta}\overline{\xi})$ est à plans focaux et développables indéterminés. Nous excluons dorénavant ce cas. Dès lors, la congruence $(\overline{\eta}\overline{\xi})$ est rapportée à ses développables et les plans focaux de la génératrice $\overline{\eta}\overline{\xi}$ sont précisément les plans $\overline{\eta}$ et $\overline{\xi}$.

17. — Remarquons, pour terminer, que le plan $\bar{\eta}$ contient le point \bar{z} , mais ne peut contenir le point \bar{y} . De même, le plan $\bar{\xi}$ contient le point \bar{y} , mais ne peut contenir le point \bar{z} . Îl en résulte que le plan $\bar{\eta}$ n'est jamais le plan tangent à (\bar{y}) en \bar{y} , ni à (\bar{z}) en \bar{z} et qu'il en est de même en ce qui concerne le plan $\bar{\xi}$.

A une congruence (yz) donnée, on pourra donc associer deux congruences distinctes $(\bar{y}\bar{z})$ et $(\bar{\eta}\bar{\xi})$.