Consistency of Robbins Monro's algorithm within a mixing framework

Abdelnasser DAHMANI, Ahmed AIT SAIDI

Abstract

This work is devoted to the study of the consistency of RobbinsMonro's algorithm under strong mixing assumption.

Mathematics Subject Classification: 62F12, 62L20, 62J05.
Key words: stochastic approximation, convergence rate, mixing.

1 Introduction

The methodologies known under the term of stochastic approximations traces its origin from the work of Robbins and Monro [11] which studied the following problem. Let R be a function of real values and θ to be the single solution of the equation

$$
\begin{equation*}
R(x)=\alpha \tag{1}
\end{equation*}
$$

where α is a known constant. The problem is to estimate θ. When R is a known function, we can found various numerical methods to approximate θ. A part from some general properties, Robbins and Monro considered the case where R is unknown but, for each point x, we have a random variable $\widetilde{R}(x, \xi)$ such as

$$
\begin{equation*}
R(x)=E(\widetilde{R}(x, \xi)) \tag{2}
\end{equation*}
$$

where ξ is a random variable with zero mean. These authors argued that a recursive sequence of random variables $\left(X_{n}\right)_{n}$ which estimate θ in a consistent way, can be constructed. They show the mean square convergence of X_{n} to θ. Considering a weaker assumptions and within the usual framework of independent and identically distributed random errors, Blum has shown the
almost sure convergence [1]. Whenever R is linear and checking the classical assumptions, Lai and Robbins argued that all least squares estimator of θ properties remain true even when the estimator of θ is obtained by the Robbins-Monro method [7]. For the nonlinear general case, a procedure of type Robbins-Monro was introduced by Venter [12] and it has been discussed in [8], and the obtained results were extended to the multivariate case by Wei [14]. In [5], Duflo has shown the almost sure convergence if the RobbinsMonro's algorithm is evaluated in \mathbb{R}^{d}.

Some theoretical results on stochastic approximation can be found in various literatures, e. g. see [13], [9] and [6].

Let us note that the independent observations are often unable to explain some phenomena, indeed, the slightly dependent observations are the most adapted to a real situation [4]. In this case and concerning different models building for the dependence of the stochastic algorithm noise, we can refer to the Brandière and Doukhan note [2].

The principal contribution of this work is to consider the least restrictive mixing sequence called also α-mixing sequence, (see [3] for more details) and to provide the almost complete (a.co) convergence rate of the RobbinsMonro's algorithm.

2 Algorithm and asymptotic study

Let (Ω, \mathcal{F}, P) be the probability space and $R: \mathbb{R} \rightarrow \mathbb{R}$ to be a function known just under a measure $\widetilde{R}(x, \xi)$ with a spot of a measure error ξ. To estimate the θ root of the equation (1), Robbins and Monro [11] built their algorithm in a recursive manner using an initial value X_{1} and defining by recurrence:

$$
\begin{equation*}
X_{n+1}=X_{n}-a_{n}\left(\widetilde{R}\left(X_{n}, \xi_{n}\right)-\alpha\right) \tag{3}
\end{equation*}
$$

where $\left(\xi_{n}\right)_{n}$ is a sequence of a real random variables with zero mean and $\left(a_{n}\right)_{n}$ is a decreasing deterministic sequence to 0 such as

$$
\begin{equation*}
\sum_{n=1}^{+\infty} a_{n}=+\infty \quad \text { and } \quad \sum_{n=1}^{+\infty} a_{n}^{2}<+\infty \tag{4}
\end{equation*}
$$

and

$$
\widetilde{R}\left(X_{n}, \xi_{n}\right)=R\left(X_{n}\right)+\xi_{n}
$$

Without loss of generality, let us suppose $\alpha=0$.
Removing θ from both members of the equality (3) and using successive iterations, we obtain

$$
\begin{equation*}
\left|X_{n+1}-\theta\right|=\left|\prod_{k=1}^{n}\left(1-a_{k} \frac{R\left(X_{k}\right)}{X_{k}-\theta}\right)\right|\left|\left(X_{1}-\theta\right)-\sum_{i=1}^{n} Z_{i}\right| \tag{5}
\end{equation*}
$$

where

$$
Z_{i}=a_{i} \prod_{k=1}^{i}\left(1-a_{k} \frac{R\left(X_{k}\right)}{X_{k}-\theta}\right)^{-1} \xi_{i} .
$$

Let us introduce now the following assumptions:
H1 : The parameter θ checks a priory

$$
\begin{equation*}
\left|X_{1}-\theta\right| \leq H<+\infty \tag{6}
\end{equation*}
$$

$\mathrm{H} 2: R$ is a function satisfying

$$
\begin{equation*}
\forall x \in \mathbb{R}, 0<m \leq \frac{R(x)}{x-\theta} \leq M<+\infty \tag{7}
\end{equation*}
$$

H3 : We suppose that, for any $\varepsilon>0$,

$$
\begin{equation*}
\varphi_{n}(\varepsilon)=n^{a m} \exp (a m \gamma) \varepsilon-H>0 \tag{8}
\end{equation*}
$$

where γ is the Euler constant.
H4: The distributed variables queues ξ_{i} check the condition of uniform decrease, that is, for any $p>2$,

$$
\begin{equation*}
\forall t>0, P\left[\left|\xi_{i}\right|>t\right] \leq t^{-p} \tag{9}
\end{equation*}
$$

H5 : We assume that the coefficients of the α-mixing sequence $\left(\xi_{n}\right)_{n}$ satisfy the following arithmetic decay condition :

$$
\begin{equation*}
\exists d \geq 1, \exists b>0, \alpha(n) \leq d n^{-b} \tag{10}
\end{equation*}
$$

H6 : The condition of arithmetically decrease (10) is satisfied for any b value such as

$$
\begin{equation*}
\exists \delta>0, \frac{4 b+p(3-b)}{(b+1) p}+\delta \leq a m-1 \tag{11}
\end{equation*}
$$

At last, we notice that if the ξ_{i} random errors are α-mixing then the Z_{i} random variables are also strongly mixing with mixing coefficients lower or equal than those of the sequence $\left(\xi_{i}\right)_{i}$.

We can know state the following result :
Theorem 1. Under the assumptions (H1)-(H6) and if $0<a M<\frac{1}{2}$ then for any real b positive such as

$$
\begin{equation*}
\left.b>\frac{(2-a m) q}{\nu_{0}} \text { with } \nu_{0} \in\right] 0,1\left[\text { and } q \text { is such as } \frac{2}{p}+\frac{1}{q}=1\right. \text {, } \tag{12}
\end{equation*}
$$

we have:

$$
\begin{equation*}
X_{n+1}-\theta=O\left(\sqrt{\frac{\log n}{n^{a m}}}\right) \quad \text { a.co. } \tag{13}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\log \prod_{k=1}^{n}\left(1-a_{k} \frac{R\left(X_{k}\right)}{X_{k}-\theta}\right) \leq \sum_{k=1}^{n}-\frac{a m}{k}=-a m\left(\log n+\gamma_{n}\right) \tag{14}
\end{equation*}
$$

where γ_{n} is defined by the relation $\gamma_{n}=\sum_{i=1}^{n} \frac{1}{i}-\log n=\gamma+(\psi(n+1)-\log n)$ where $\psi($.$) is the digamma function.$

It is obvious to show that $\gamma_{n}-\gamma_{n-1}=\log \left(1-\frac{1}{n}\right)+\frac{1}{n}<0$, for any $n>1$. This leads to the well known result where the sequence γ_{n} decrease to the Euler constant γ, let

$$
\begin{equation*}
\gamma_{n}>\gamma=\lim _{n \rightarrow+\infty}\left\{\sum_{i=1}^{n} \frac{1}{i}-\log n\right\}=0.577215 \ldots \tag{15}
\end{equation*}
$$

From this relation, we obtain

$$
\begin{equation*}
\log \prod_{k=1}^{n}\left(1-a_{k} \frac{R\left(X_{k}\right)}{X_{k}-\theta}\right) \leq-a m(\log n+\gamma) \tag{16}
\end{equation*}
$$

This makes it possible to conclude

$$
\begin{equation*}
\prod_{k=1}^{n}\left(1-a_{k} \frac{R\left(X_{k}\right)}{X_{k}-\theta}\right) \leq n^{-a m} \exp (-a m \gamma) \tag{17}
\end{equation*}
$$

and then, using (5) and the assumptions (H1) and (H4), we deduce that

$$
\begin{equation*}
P\left[\left|X_{n+1}-\theta\right|>\varepsilon\right] \leq P\left[\left|\sum_{i=1}^{n} Z_{i}\right|>\varphi_{n}(\varepsilon)\right] . \tag{18}
\end{equation*}
$$

On the other hand, for a rather large natural integer n we have

$$
\frac{H}{n^{a m} \exp (a m \gamma)}<\frac{\varepsilon}{2}
$$

which gives

$$
\begin{equation*}
\varphi_{n}(\varepsilon)=n^{a m} \exp (a m \gamma)\left(\varepsilon-\frac{H}{n^{a m} \exp (a m \gamma)}\right)>\frac{\varepsilon}{2} n^{a m} \tag{19}
\end{equation*}
$$

so, taking $\lambda=\frac{\varepsilon}{8}$,

$$
\begin{equation*}
P\left[\left|X_{n+1}-\theta\right|>\varepsilon\right] \leq P\left[\left|\sum_{i=1}^{n} Z_{i}\right|>4 \lambda n^{a m}\right] \tag{20}
\end{equation*}
$$

Using (9), we show that, we can found positive constant M_{1} such as, for a given $p>2$,

$$
\begin{equation*}
\exists p>2, \forall t>0, P\left[\left|Z_{i}\right|>t\right] \leq M_{1} t^{-p} \tag{21}
\end{equation*}
$$

Thus, applying directly the Fuk-Nagaev exponential inequality given by Rio ([10], formula (6.19a)), to strongly mixing variables Z_{i} we have,

$$
\begin{equation*}
P\left[\left|X_{n+1}-\theta\right|>\varepsilon\right] \leq 4\left(1+\frac{\left(\lambda n^{a m}\right)^{2}}{r s_{n}^{2}}\right)^{\frac{-r}{2}}+4 C n r^{-1}\left(\frac{r}{\lambda n^{a m}}\right)^{\frac{(b+1) p}{b+p}} \tag{22}
\end{equation*}
$$

for any $\varepsilon>0$ and $r \geq 1$
with

$$
C=2 p M_{1}(2 p-1)^{-1}\left(2^{b} d\right)^{\frac{p-1}{b+p}}
$$

and

$$
\begin{equation*}
s_{n}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|\operatorname{cov}\left(Z_{i}, Z_{j}\right)\right|=\sum_{i=1}^{n} \operatorname{var}\left(Z_{i}\right)+\sum_{i=1}^{n} \sum_{j \neq i}\left|\operatorname{cov}\left(Z_{i}, Z_{j}\right)\right| . \tag{23}
\end{equation*}
$$

On the one hand, under the assumptions (H2) and by virtue of the inequality

$$
\log (1-x) \geq-x-x^{2}
$$

we have

$$
\begin{align*}
\prod_{k=1}^{i}\left(1-a_{k} \frac{R\left(X_{k}\right)}{X_{k}-\theta}\right) & \geq \prod_{k=1}^{i}\left(1-\frac{a M}{k}\right) \\
& \geq(1-a M) i^{-a M} e^{-(a M)^{2}} \tag{24}
\end{align*}
$$

From this relation and according to (21), we obtain

$$
\begin{equation*}
\exists M_{2}<+\infty: E Z_{i}^{2} \leq M_{2} \quad \text { and } \quad \operatorname{var}\left(Z_{i}\right) \leq C_{1} i^{2(a M-1)} \tag{25}
\end{equation*}
$$

with $C_{1}=\left(\frac{a}{1-a M}\right)^{2} M_{2} \exp \left(2 a^{2} M^{2}\right)$. As $a<\frac{1}{2 M}$, we deduce that

$$
\begin{equation*}
\sum_{i=1}^{n} \operatorname{var}\left(Z_{i}\right) \leq \sum_{i=1}^{n} \frac{C_{1}}{i^{2(1-a M)}} \leq D C_{1} \tag{26}
\end{equation*}
$$

since it is a partial sum of a convergent sequence with positive terms.
On the other hand, for $i \neq j$,

$$
\begin{equation*}
\left|\operatorname{cov}\left(Z_{i}, Z_{j}\right)\right| \leq C_{2} i^{a M-1} j^{a M-1}\left|E\left(\xi_{i} \xi_{j}\right)\right| \tag{27}
\end{equation*}
$$

with $\left.C_{2}=\left(\frac{a}{1-a M}\right)^{2} \exp \left(2 a^{2} M^{2}\right)\right)$. From the relation (9), we can use the Davydov-Rio inequality given by Rio (2000, formula (1.12c)) to obtain:

$$
\begin{equation*}
\left|E\left(\xi_{i} \xi_{j}\right)\right| \leq 2 q(\alpha(|i-j|))^{\frac{1}{q}} \tag{28}
\end{equation*}
$$

and, then

$$
\begin{equation*}
\left|\operatorname{cov}\left(Z_{i}, Z_{j}\right)\right| \leq 2 q C_{2} i^{a M-1} j^{a M-1}(\alpha(|i-j|))^{\frac{1}{q}} \tag{29}
\end{equation*}
$$

Applying a second time the Davydov-Rio inequality to Z_{i} variables and using (21), we obtain

$$
\begin{equation*}
\forall i \neq j,\left|\operatorname{cov}\left(Z_{i}, Z_{j}\right)\right| \leq 2 q M_{1}^{2 / p}(\alpha(|i-j|))^{\frac{1}{q}} \tag{30}
\end{equation*}
$$

since the mixing coefficients of the sequence $\left(Z_{i}\right)_{i}$ are lower or equal than those of the sequence $\left(\xi_{i}\right)_{i}$. Making together (29) and (30), we have

$$
\begin{align*}
& \sum_{i=1}^{n} \sum_{i \neq j}\left|\operatorname{cov}\left(Z_{i}, Z_{j}\right)\right| \leq \sum_{i=1}^{n} \sum_{|i-j| \leq u_{n}} 2 q C_{2} i^{a M-1} j^{a M-1}(\alpha(|i-j|))^{\frac{1}{q}} \\
& +\sum_{i=1}^{n} \sum_{|i-j|>u_{n}}^{n} 2 q M_{1}^{2 / p}(\alpha(|i-j|))^{\frac{1}{q}} \tag{31}\\
\leq & \sum_{i=1}^{n} \frac{1}{i^{2(1-a M)}} \sum_{k=1}^{n} 2 q C_{2}(\alpha(k))^{\frac{1}{q}}+2 n^{2} q M_{1}^{2 / p}\left(\alpha\left(u_{n}\right)\right)^{\frac{1}{q}}
\end{align*}
$$

or also

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j \neq i}\left|\operatorname{cov}\left(Z_{i}, Z_{j}\right)\right| \leq 2 D C_{2} D_{1}+2 n^{2} q M_{1}^{2 / p}\left(\alpha\left(u_{n}\right)\right)^{\frac{1}{q}} \tag{32}
\end{equation*}
$$

with $D_{1}=\sum_{k=1}^{n} q(\alpha(k))^{\frac{1}{q}}$. So, taking $u_{n}=\left[n^{\nu_{0}}\right]$, the hooks indicating the whole part, and using (10), (12), (26) and (32) we obtain, for n rather large:

$$
\begin{equation*}
s_{n}^{2}=o\left(n^{a m}\right) \tag{33}
\end{equation*}
$$

since

$$
\begin{equation*}
\frac{2 n^{2} q\left(\alpha\left(u_{n}\right)\right)^{\frac{1}{q}} M_{1}^{2 / p}}{n^{a m}} \leq \frac{2 q d^{\frac{1}{q}} M_{1}^{2 / p}}{n^{a m-2+\nu_{0} \frac{b}{q}}} \longrightarrow 0 . \tag{34}
\end{equation*}
$$

So, taking into account (33), we have the inequality

$$
\begin{equation*}
P\left[\left|X_{n+1}-\theta\right|>\varepsilon\right] \leq K_{1}+K_{2} \tag{35}
\end{equation*}
$$

with $K_{1}=4\left(1+\frac{\lambda^{2} n^{a m}}{r}\right)^{\frac{-r}{2}}$ and $K_{2}=4 C n r^{-1}\left(\frac{r}{\lambda n^{a m}}\right)^{\frac{(b+1) p}{b+p}}$.
Taking $\lambda=\frac{\rho}{4} \sqrt{n^{-a m} \log n}, \rho>0$, we obtain the convergence rate.
For a suitably chosen r such as $r=K(\log n)^{2}$, we obtain

$$
\begin{equation*}
K_{1}=4\left(1+\frac{\rho^{2} \log n}{16 r}\right)^{\frac{-r}{2}} \leq K \exp \left(-\rho^{2} \frac{\log n}{32}\right)=K n^{-\frac{\rho^{2}}{32}} \tag{36}
\end{equation*}
$$

where K indicates a generic positive constant. With regard to K_{2}, we have

$$
\begin{align*}
K_{2} & =4 C n r^{-1} r^{\frac{p(b+1)}{b+p}} \lambda^{-\frac{p(b+1)}{b+p}} n^{-\frac{a m p(b+1)}{b+p}} \\
& =4 C n r^{-1+\frac{p(b+1)}{b+p}}\left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}} n^{a m \frac{p(b+1)}{2(b+p)}}(\log n)^{\frac{-p(b+1)}{2(b+p)}} n^{-\frac{a m p(b+1)}{b+p}} \\
& =4 C n r^{-1+\frac{p(b+1)}{b+p}}\left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}}(\log n)^{\frac{-p(b+1)}{2(b+p)}} n^{-\frac{a m p(b+1)}{2(b+p)}} \tag{37}\\
& =4 C n r^{-1+\frac{p(b+1)}{b+p}}\left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}}(\log n)^{\frac{-p(b+1)}{2(b+p)}}\left(n n^{a m-1}\right)^{-\frac{p(b+1)}{2(b+p)}} \\
& =4 C n r^{-1+\frac{p(b+1)}{b+p}}\left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}}(\log n)^{\frac{-p(b+1)}{2(b+p)}} n^{-\frac{p(b+1)}{2(b+p)}} n^{-(a m-1) \frac{p(b+1)}{2(b+p)}} .
\end{align*}
$$

since $r=K(\log n)^{2}$, we have

$$
\begin{equation*}
K_{2}=4 C\left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}}(\log n)^{\frac{b(3 p-4)-p}{2(b+p)}} n^{\frac{(b(2-p)+p)}{2(b+p)}} n^{-(a m-1) \frac{p(b+1)}{2(b+p)}} . \tag{38}
\end{equation*}
$$

By virtue of the condition (11), we obtain

$$
\begin{equation*}
K_{2} \leq 4 C\left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}}(\log n)^{\frac{b(3 p-4)-p}{2(b+p)}} n^{-1-\frac{\delta p(b+1)}{2(b+p)}} \tag{39}
\end{equation*}
$$

Consequently, it exists $\widetilde{d}>0$ such as

$$
\begin{equation*}
K_{2} \leq K n^{-1-\widetilde{d}} \tag{40}
\end{equation*}
$$

so, for $\varepsilon=2 \rho \sqrt{n^{-a m} \log n}$ and for ρ sufficiently large, we have

$$
\begin{equation*}
P\left[\left|X_{n+1}-\theta\right|>2 \rho \sqrt{n^{-a m} \log n}\right] \leq K n^{\frac{-\rho^{2}}{32}}+K n^{-1-\tilde{d}} \leq K n^{-1-\tilde{d}} \tag{41}
\end{equation*}
$$

The right-hand side of the latter inequality is a convergent series. So, (41) leads to the result.

Application. Finding a root of a regression function.
A typical example is $R(X, \xi)=R(X)+\xi$. By conditioning with respect to X and moving to the expectation, we can write:

$$
E(\widetilde{R}(X, \xi) \mid X)=E(R(X) \mid X)+E(\xi \mid X)
$$

Assuming that $E(\xi \mid X)=0$, we have

$$
\begin{equation*}
E(\widetilde{R}(X, \xi) \mid X)=E(R(X) \mid X) \tag{42}
\end{equation*}
$$

Thus, the search for the root function

$$
R(x)=E(\widetilde{R}(X, \xi) \mid X=x)=E(R(X) \mid X=x)
$$

reduces to that of the regression function $R(X)$ on X. It is therefore possible to use the stochastic algorithm of Robbins-Monro to find the root of a unimodal regression function. To characterize the strong mixing (α-mixing) random errors ξ_{i}, it suffices to consider an autoregressive model of order 1

$$
\xi_{i}=\phi \xi_{i-1}+v_{i}
$$

where v_{i} is a Gaussian white noise process and $|\phi|<1$. This situation mainly occurs in time series models.

References

[1] J.R. Blum, Approximation methods which converge with probability one, Ann. Math. Stat., 25 (1954), 382-386
[2] P. Doukhan, O. Brandière, Dependent noise for stochastic algorithms, C. R. Acad. Sci. Paris, Ser. I 337 (7) (2003) pp. 473-476.
[3] P. Doukhan, Mixing : Properties and examples. Lect. notes in statistic, 80, Springer-Verlag. Berlin, 1994.
[4] P. Doukhan, S. Louhichi, A new weak dependence condition and applications to moment inequalities, Stochastic Process and their applications 84, (1999), pp.313-342.
[5] M. Duflo, Méthodes récursives aléatoires. Masson 1990.
[6] A.N. Korostelev, Procédures stochastiques récurrentes : propriétés locales. Naouka, Moscou, 1984 (en russe).
[7] T.L. Lai, H. Robbins, adaptive design in regression and control, Proc., Nat., Acad., Sci., USA, 75, (1978), pp. 586-587.
[8] T.L. Lai, H. Robbins, adaptive design in regression and stochastic approximation, Ann. Statist., 7, (1979), pp. 1196-1221.
[9] M.B. Nevelson, R.Z. Hasminskii, Stochastic approximation and recursive estimation, Amer., Math., Soc., Providence, R.I., 1973.
[10] E. Rio, Théorie asymptotique des processus faiblement dépendants. In Mathématiques \& Applications, 31, Springer-Verlag, Berlin Heidelberg, 2000.
[11] H. Robbins, S. Monro. A stochastic approximation method. Ann. Math. Stat., 22. N ${ }^{\circ} 1$. (1951), p.400-407.
[12] J. Venter, An extension of the Robbins-Monro procedure, Ann. Math. Statist., 38, (1967), pp. 181-190.
[13] M.T. Wasan, Stochastic approximation. Cambridge. University press, 1969.
[14] C.Z. Wei, Multivariate adaptive stochastic approximation, Ann. of Stat., Vol. 15, N ${ }^{\circ} 3$, (1987), pp. 1115-1130.

Abdelnasser DAHMANI, Ahmed AIT SAIDI
Laboratory of Applied Mathematics
University of Bejaia, Algeria
E-mail : a_dahmany@yahoo.fr

