(Manuscrit reçu le 5 juillet 2010 et accepté le 26 novembre 2010)

Consistency of Robbins Monro's algorithm within a mixing framework

Abdelnasser DAHMANI, Ahmed AIT SAIDI

Abstract

This work is devoted to the study of the consistency of Robbins-Monro's algorithm under strong mixing assumption.

Mathematics Subject Classification: 62F12, 62L20, 62J05. Key words: stochastic approximation, convergence rate, mixing.

1 Introduction

The methodologies known under the term of stochastic approximations traces its origin from the work of Robbins and Monro [11] which studied the following problem. Let R be a function of real values and θ to be the single solution of the equation

$$R\left(x\right) = \alpha \tag{1}$$

where α is a known constant. The problem is to estimate θ . When R is a known function, we can found various numerical methods to approximate θ . A part from some general properties, Robbins and Monro considered the case where R is unknown but, for each point x, we have a random variable $\widetilde{R}(x,\xi)$ such as

$$R(x) = E\left(\widetilde{R}(x,\xi)\right) \tag{2}$$

where ξ is a random variable with zero mean. These authors argued that a recursive sequence of random variables $(X_n)_n$ which estimate θ in a consistent way, can be constructed. They show the mean square convergence of X_n to θ . Considering a weaker assumptions and within the usual framework of independent and identically distributed random errors, Blum has shown the

almost sure convergence [1]. Whenever R is linear and checking the classical assumptions, Lai and Robbins argued that all least squares estimator of θ properties remain true even when the estimator of θ is obtained by the Robbins-Monro method [7]. For the nonlinear general case, a procedure of type Robbins-Monro was introduced by Venter [12] and it has been discussed in [8], and the obtained results were extended to the multivariate case by Wei [14]. In [5], Duflo has shown the almost sure convergence if the Robbins-Monro's algorithm is evaluated in \mathbb{R}^d .

Some theoretical results on stochastic approximation can be found in various literatures, e. g. see [13], [9] and [6].

Let us note that the independent observations are often unable to explain some phenomena, indeed, the slightly dependent observations are the most adapted to a real situation [4]. In this case and concerning different models building for the dependence of the stochastic algorithm noise, we can refer to the Brandière and Doukhan note [2].

The principal contribution of this work is to consider the least restrictive mixing sequence called also α -mixing sequence, (see [3] for more details) and to provide the almost complete (*a.co*) convergence rate of the Robbins-Monro's algorithm.

2 Algorithm and asymptotic study

Let (Ω, \mathcal{F}, P) be the probability space and $R : \mathbb{R} \to \mathbb{R}$ to be a function known just under a measure $\widetilde{R}(x,\xi)$ with a spot of a measure error ξ . To estimate the θ root of the equation (1), Robbins and Monro [11] built their algorithm in a recursive manner using an initial value X_1 and defining by recurrence:

$$X_{n+1} = X_n - a_n \left(\widetilde{R} \left(X_n, \xi_n \right) - \alpha \right)$$
(3)

where $(\xi_n)_n$ is a sequence of a real random variables with zero mean and $(a_n)_n$ is a decreasing deterministic sequence to 0 such as

$$\sum_{n=1}^{+\infty} a_n = +\infty \quad \text{and} \quad \sum_{n=1}^{+\infty} a_n^2 < +\infty \tag{4}$$

and

$$\widetilde{R}(X_n,\xi_n) = R(X_n) + \xi_n$$

Without loss of generality, let us suppose $\alpha = 0$.

Removing θ from both members of the equality (3) and using successive iterations, we obtain

$$|X_{n+1} - \theta| = \left| \prod_{k=1}^{n} \left(1 - a_k \frac{R(X_k)}{X_k - \theta} \right) \right| \left| (X_1 - \theta) - \sum_{i=1}^{n} Z_i \right|$$
(5)

where

$$Z_i = a_i \prod_{k=1}^{i} \left(1 - a_k \frac{R(X_k)}{X_k - \theta} \right)^{-1} \xi_i.$$

Let us introduce now the following assumptions:

H1 : The parameter θ checks a priory

$$|X_1 - \theta| \le H < +\infty. \tag{6}$$

H2: R is a function satisfying

$$\forall x \in \mathbb{R}, 0 < m \le \frac{R(x)}{x - \theta} \le M < +\infty.$$
(7)

H3 : We suppose that, for any $\varepsilon > 0$,

$$\varphi_n\left(\varepsilon\right) = n^{am} \exp(am\gamma)\varepsilon - H > 0 \tag{8}$$

where γ is the Euler constant.

H4 : The distributed variables queues ξ_i check the condition of uniform decrease, that is, for any p > 2,

$$\forall t > 0 , P[|\xi_i| > t] \le t^{-p}.$$
 (9)

H5 : We assume that the coefficients of the α -mixing sequence $(\xi_n)_n$ satisfy the following arithmetic decay condition :

$$\exists d \ge 1, \exists b > 0, \ \alpha(n) \le dn^{-b}.$$
(10)

H6 : The condition of arithmetically decrease (10) is satisfied for any b value such as

$$\exists \delta > 0, \ \frac{4b + p(3-b)}{(b+1)p} + \delta \le am - 1.$$
(11)

At last, we notice that if the ξ_i random errors are α -mixing then the Z_i random variables are also strongly mixing with mixing coefficients lower or equal than those of the sequence $(\xi_i)_i$.

We can know state the following result :

Theorem 1. Under the assumptions (H1)–(H6) and if $0 < aM < \frac{1}{2}$ then for any real b positive such as

$$b > \frac{(2-am)q}{\nu_0}$$
 with $\nu_0 \in [0,1[$ and q is such as $\frac{2}{p} + \frac{1}{q} = 1,$ (12)

we have:

$$X_{n+1} - \theta = O(\sqrt{\frac{\log n}{n^{am}}}) \quad a.co.$$
(13)

Proof. We have

$$\log \prod_{k=1}^{n} \left(1 - a_k \frac{R(X_k)}{X_k - \theta} \right) \le \sum_{k=1}^{n} -\frac{am}{k} = -am \left(\log n + \gamma_n \right) \tag{14}$$

where γ_n is defined by the relation $\gamma_n = \sum_{i=1}^n \frac{1}{i} - \log n = \gamma + (\psi(n+1) - \log n)$ where $\psi(.)$ is the digamma function.

It is obvious to show that $\gamma_n - \gamma_{n-1} = \log(1 - \frac{1}{n}) + \frac{1}{n} < 0$, for any n > 1. This leads to the well known result where the sequence γ_n decrease to the Euler constant γ , let

$$\gamma_n > \gamma = \lim_{n \to +\infty} \left\{ \sum_{i=1}^n \frac{1}{i} - \log n \right\} = 0.577215...$$
 (15)

From this relation, we obtain

$$\log \prod_{k=1}^{n} \left(1 - a_k \frac{R(X_k)}{X_k - \theta} \right) \le -am \left(\log n + \gamma \right) \tag{16}$$

This makes it possible to conclude

$$\prod_{k=1}^{n} \left(1 - a_k \frac{R(X_k)}{X_k - \theta} \right) \le n^{-am} \exp\left(-am\gamma\right) \tag{17}$$

and then, using (5) and the assumptions (H1) and (H4), we deduce that

$$P\left[|X_{n+1} - \theta| > \varepsilon\right] \le P\left[\left|\sum_{i=1}^{n} Z_{i}\right| > \varphi_{n}\left(\varepsilon\right)\right].$$
(18)

On the other hand, for a rather large natural integer n we have

$$\frac{H}{n^{am}\exp(am\gamma)} < \frac{\varepsilon}{2}$$

which gives

$$\varphi_n(\varepsilon) = n^{am} \exp(am\gamma) \left(\varepsilon - \frac{H}{n^{am} \exp(am\gamma)}\right) > \frac{\varepsilon}{2} n^{am},$$
 (19)

so, taking $\lambda = \frac{\varepsilon}{8}$,

$$P\left[|X_{n+1} - \theta| > \varepsilon\right] \le P\left[\left|\sum_{i=1}^{n} Z_i\right| > 4\lambda n^{am}\right].$$
(20)

Using (9), we show that, we can found positive constant M_1 such as, for a given p > 2,

$$\exists p > 2, \forall t > 0 , P[|Z_i| > t] \le M_1 t^{-p}.$$
 (21)

Thus, applying directly the Fuk-Nagaev exponential inequality given by Rio ([10], formula (6.19a)), to strongly mixing variables Z_i we have,

$$P\left[|X_{n+1} - \theta| > \varepsilon\right] \le 4\left(1 + \frac{(\lambda n^{am})^2}{rs_n^2}\right)^{\frac{-r}{2}} + 4Cnr^{-1}\left(\frac{r}{\lambda n^{am}}\right)^{\frac{(b+1)p}{b+p}}$$
(22)

for any $\varepsilon>0$ and $r\geq 1$

with

$$C = 2pM_1 (2p-1)^{-1} (2^b d)^{\frac{p-1}{b+p}}$$

and

$$s_n^2 = \sum_{i=1}^n \sum_{j=1}^n |cov(Z_i, Z_j)| = \sum_{i=1}^n var(Z_i) + \sum_{i=1}^n \sum_{j \neq i} |cov(Z_i, Z_j)|.$$
(23)

On the one hand, under the assumptions (H2) and by virtue of the inequality

$$\log\left(1-x\right) \ge -x - x^2$$

we have

$$\prod_{k=1}^{i} \left(1 - a_k \frac{R(X_k)}{X_k - \theta} \right) \geq \prod_{k=1}^{i} \left(1 - \frac{aM}{k} \right) \\
\geq (1 - aM) i^{-aM} e^{-(aM)^2}.$$
(24)

From this relation and according to (21), we obtain

$$\exists M_2 < +\infty : EZ_i^2 \le M_2 \quad \text{and} \quad var(Z_i) \le C_1 i^{2(aM-1)}$$
(25)

with $C_1 = \left(\frac{a}{1-aM}\right)^2 M_2 \exp(2a^2M^2)$. As $a < \frac{1}{2M}$, we deduce that

$$\sum_{i=1}^{n} var(Z_i) \le \sum_{i=1}^{n} \frac{C_1}{i^{2(1-aM)}} \le DC_1$$
(26)

since it is a partial sum of a convergent sequence with positive terms.

On the other hand, for $i \neq j$,

$$|cov(Z_i, Z_j)| \le C_2 i^{aM-1} j^{aM-1} |E(\xi_i \xi_j)|$$
 (27)

with $C_2 = \left(\frac{a}{1-aM}\right)^2 \exp(2a^2M^2)$). From the relation (9), we can use the Davydov-Rio inequality given by Rio (2000, formula (1.12c)) to obtain:

$$|E(\xi_i\xi_j)| \le 2q \left(\alpha \left(|i-j|\right)\right)^{\frac{1}{q}} \tag{28}$$

and, then

$$|cov(Z_i, Z_j)| \le 2qC_2 i^{aM-1} j^{aM-1} \left(\alpha \left(|i-j|\right)\right)^{\frac{1}{q}}.$$
 (29)

Applying a second time the Davydov-Rio inequality to Z_i variables and using (21), we obtain

$$\forall i \neq j, \ |cov(Z_i, Z_j)| \le 2qM_1^{2/p} \left(\alpha \left(|i-j|\right)\right)^{\frac{1}{q}}$$
 (30)

since the mixing coefficients of the sequence $(Z_i)_i$ are lower or equal than those of the sequence $(\xi_i)_i$. Making together (29) and (30), we have

$$\sum_{i=1}^{n} \sum_{i \neq j} |cov(Z_i, Z_j)| \leq \sum_{i=1}^{n} \sum_{|i-j| \leq u_n} 2qC_2 i^{aM-1} j^{aM-1} \left(\alpha \left(|i-j|\right)\right)^{\frac{1}{q}} + \sum_{i=1}^{n} \sum_{|i-j| > u_n}^{n} 2qM_1^{2/p} \left(\alpha \left(|i-j|\right)\right)^{\frac{1}{q}}$$
(31)
$$\leq \sum_{i=1}^{n} \frac{1}{i^{2(1-aM)}} \sum_{k=1}^{n} 2qC_2 \left(\alpha \left(k\right)\right)^{\frac{1}{q}} + 2n^2 qM_1^{2/p} \left(\alpha \left(u_n\right)\right)^{\frac{1}{q}}$$

or also

$$\sum_{i=1}^{n} \sum_{j \neq i} |cov(Z_i, Z_j)| \le 2DC_2D_1 + 2n^2 q M_1^{2/p} \left(\alpha\left(u_n\right)\right)^{\frac{1}{q}}$$
(32)

with $D_1 = \sum_{k=1}^{n} q(\alpha(k))^{\frac{1}{q}}$. So, taking $u_n = [n^{\nu_0}]$, the hooks indicating the whole part, and using (10), (12), (26) and (32) we obtain, for *n* rather large:

$$s_n^2 = o(n^{am}) \tag{33}$$

since

$$\frac{2n^2q\left(\alpha\left(u_n\right)\right)^{\frac{1}{q}}M_1^{2/p}}{n^{am}} \le \frac{2qd^{\frac{1}{q}}M_1^{2/p}}{n^{am-2+\nu_0\frac{b}{q}}} \longrightarrow 0.$$
 (34)

So, taking into account (33), we have the inequality

$$P\left[|X_{n+1} - \theta| > \varepsilon\right] \le K_1 + K_2 \tag{35}$$

with $K_1 = 4\left(1 + \frac{\lambda^2 n^{am}}{r}\right)^{\frac{-r}{2}}$ and $K_2 = 4Cnr^{-1}\left(\frac{r}{\lambda n^{am}}\right)^{\frac{(b+1)p}{b+p}}$. Taking $\lambda = \frac{\rho}{4}\sqrt{n^{-am}\log n}, \rho > 0$, we obtain the convergence rate. For a suitably chosen r such as $r = K(\log n)^2$, we obtain

$$K_1 = 4\left(1 + \frac{\rho^2 \log n}{16r}\right)^{\frac{-r}{2}} \le K \exp(-\rho^2 \frac{\log n}{32}) = K n^{-\frac{\rho^2}{32}}$$
(36)

where K indicates a generic positive constant. With regard to K_2 , we have

$$K_{2} = 4Cnr^{-1}r^{\frac{p(b+1)}{b+p}}\lambda^{-\frac{p(b+1)}{b+p}}n^{-\frac{amp(b+1)}{b+p}}$$

$$= 4Cnr^{-1+\frac{p(b+1)}{b+p}}\left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}}n^{am\frac{p(b+1)}{2(b+p)}}\left(\log n\right)^{\frac{-p(b+1)}{2(b+p)}}n^{-\frac{amp(b+1)}{b+p}}$$

$$= 4Cnr^{-1+\frac{p(b+1)}{b+p}}\left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}}\left(\log n\right)^{\frac{-p(b+1)}{2(b+p)}}n^{-\frac{amp(b+1)}{2(b+p)}}$$

$$= 4Cnr^{-1+\frac{p(b+1)}{b+p}}\left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}}\left(\log n\right)^{\frac{-p(b+1)}{2(b+p)}}n^{-\frac{p(b+1)}{2(b+p)}}n^{-(am-1)\frac{p(b+1)}{2(b+p)}}.$$
(37)

since $r = K (\log n)^2$, we have

$$K_2 = 4C \left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}} \left(\log n\right)^{\frac{b(3p-4)-p}{2(b+p)}} n^{\frac{(b(2-p)+p)}{2(b+p)}} n^{-(am-1)\frac{p(b+1)}{2(b+p)}}.$$
 (38)

By virtue of the condition (11), we obtain

$$K_2 \le 4C \left(\frac{\rho}{4}\right)^{-\frac{p(b+1)}{b+p}} (\log n)^{\frac{b(3p-4)-p}{2(b+p)}} n^{-1-\frac{\delta p(b+1)}{2(b+p)}}.$$
(39)

Consequently, it exists $\tilde{d} > 0$ such as

$$K_2 \le K n^{-1-\tilde{d}},\tag{40}$$

so, for $\varepsilon = 2\rho \sqrt{n^{-am} \log n}$ and for ρ sufficiently large, we have

$$P\left[|X_{n+1} - \theta| > 2\rho\sqrt{n^{-am}\log n}\right] \le Kn^{\frac{-\rho^2}{32}} + Kn^{-1-\tilde{d}} \le Kn^{-1-\tilde{d}}.$$
 (41)

The right-hand side of the latter inequality is a convergent series. So, (41) leads to the result. $\hfill \Box$

Application. Finding a root of a regression function.

A typical example is $\widetilde{R}(X,\xi) = R(X) + \xi$. By conditioning with respect to X and moving to the expectation, we can write:

$$E(\widetilde{R}(X,\xi) \mid X) = E(R(X) \mid X) + E(\xi \mid X).$$

Assuming that $E(\xi \mid X) = 0$, we have

$$E(\widehat{R}(X,\xi) \mid X) = E(R(X) \mid X).$$
(42)

Thus, the search for the root function

$$R(x) = E(\hat{R}(X,\xi) \mid X = x) = E(R(X) \mid X = x)$$

reduces to that of the regression function R(X) on X. It is therefore possible to use the stochastic algorithm of Robbins-Monro to find the root of a unimodal regression function. To characterize the strong mixing (α -mixing) random errors ξ_i , it suffices to consider an autoregressive model of order 1

$$\xi_i = \phi \xi_{i-1} + v_i$$

where v_i is a Gaussian white noise process and $|\phi| < 1$. This situation mainly occurs in time series models.

References

- J.R. Blum, Approximation methods which converge with probability one, Ann. Math. Stat., 25 (1954), 382–386
- P. Doukhan, O. Brandière, Dependent noise for stochastic algorithms, C. R. Acad. Sci. Paris, Ser. I 337 (7) (2003) pp. 473–476.
- [3] P. Doukhan, Mixing : Properties and examples. Lect. notes in statistic, 80, Springer-Verlag. Berlin, 1994.
- [4] P. Doukhan, S. Louhichi, A new weak dependence condition and applications to moment inequalities, Stochastic Process and their applications 84, (1999), pp.313-342.
- [5] M. Duflo, Méthodes récursives aléatoires. Masson 1990.
- [6] A.N. Korostelev, Procédures stochastiques récurrentes : propriétés locales. Naouka, Moscou, 1984 (en russe).
- [7] T.L. Lai, H. Robbins, adaptive design in regression and control, Proc., Nat., Acad., Sci., USA, 75, (1978), pp. 586-587.

- [8] T.L. Lai, H. Robbins, adaptive design in regression and stochastic approximation, Ann. Statist., 7, (1979), pp. 1196-1221.
- [9] M.B. Nevelson, R.Z. Hasminskii, Stochastic approximation and recursive estimation, Amer., Math., Soc., Providence, R.I., 1973.
- [10] E. Rio, Théorie asymptotique des processus faiblement dépendants. In Mathématiques & Applications, 31, Springer-Verlag, Berlin Heidelberg, 2000.
- [11] H. Robbins, S. Monro. A stochastic approximation method. Ann. Math. Stat., 22. N°1. (1951), p.400-407.
- [12] J. Venter, An extension of the Robbins-Monro procedure, Ann. Math. Statist., 38, (1967), pp. 181-190.
- [13] M.T. Wasan, Stochastic approximation. Cambridge. University press, 1969.
- [14] C.Z. Wei, Multivariate adaptive stochastic approximation, Ann. of Stat., Vol. 15, N°3, (1987), pp. 1115-1130.

Abdelnasser DAHMANI, Ahmed AIT SAIDI Laboratory of Applied Mathematics University of Bejaia, Algeria E-mail : a_dahmany@yahoo.fr