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ON A CLASS OF ANALYTIC FUNCTIONS WITH FIXED
SECOND, COEFFICIENT 1l

SHIGEYOSH! OWA

ABSTRACT. Sarangi and Uralegaddi studied the class t(u)

consisting of functions

f(z) = z - T a_z? (a

> 0)
n=2 B

n =

satisfying Re{f'(2)} > a (0 < o < 1). We introduce the class
Po,p) (0 <a<1,0<psl)of functions £(2) & ((o) with fixed
second coefficient. The object of the present paper is to show
coefficient inequalities, distortion theorems and closure theorem
for functions f£(z) in t(a,p), and to determine the radii of stér-
likeness and convexity for t(a,p).vFurther we consider the modi-

fied Hadamard product of functions £(z) belonging to the class

Lo, p).

I. INTRODUCTION
Let A denote the class of functions of the form

(1.1) £(z) =z + I az"
n=2 2

which are analytic in the unit disk | = {z: |z| < 1}. Further let

{(a) denote the subclass of A consisting of functions satisfying
(1.2) Re{f'(z)} > o z € 1)

for some a (0 < o < 1).

In particular, the class ((0) was studied by MacGregor [1].
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Let A denote the subclass of /| whose members have the form

(1.3) f(z) =2 - ozozanz“ (a
X n= " . .

n__>_0).

We denote by t(a) the class obtained by taking intersection of ((a)

with §, that is, ((e) = C(a) NK.
The class t(u) was studied by Sarangi and Uralegaddi [3], and
Owa and Uralegaddi [2].

In [3], Sarangi and Uralegaddi gave the following lemma.

LeMMA 1. Let the function £(2z) be defined by (1.3). Then
f(z) is in ‘the class t(a) if and only if

0

(1.4) . Zna 21~ a.
n=2 o

By virtue of Lemma 1, we introduce the following class of

analytic functions with fixed second coefficient.

DEFINITION, Let t(a,p) be the class of functions of the

form

p(l - a) @
_— 22 - T oa_zl (a. > 0)

(1.5) f(z) = -
z “ 2 n=3 " n

such that £(z) & { (o), where 0 < a <1 and 0 < p < 1.

2. COEFFICIENT INEQUALITIES

THEOREM I, Let the function f(z) be defined by (1.5). Then

f(z) is in the class t(u,p) if and only if

=+

(2.1) z na, < 1 -pa - o).
n=3

The result is sharp.

144



Proor, Putting a, = p(l - @)/2 in Lemma 1, we have

(2.2) p(l - o) + Ina <1-aqa
n=3 o

which gives (2.1). Further we can observe that the result is sharp

for the function given by

L - 1-p)(L - :
(2.3) f(z) =z - _Ef_?;_fz 22 (1 - p)( ) o
n

for n > 3.

CORQLLARy_I,i Let the function £(z) defined by (1.5) be in

the class t(a,p). Then

1-p@-w

n

(2.4) a_ <

for n > 3. Equality is attained for the function £(z) given by

(2.3).

COROLLARY 2. Let 0 < @; Loy <1 and 02 Py £ Py 2 1. Then

(2.5) t(al’pl) :) t(az:P2)~

THEOREM 2. Let

P(l - 0L) 2
(2.6) £,(2) =2z - ~ 2
2
and
(1 - o) (1 - p)(L - )
@7 f@ -z - 2 P e
2 n

for n > 3, where 0 < o <1 and 0 < p < 1. Then £(z) is in the

class t(a,p) if and only if it can be expressed in the form
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(2.8) ~ f(z) = OZOA £ (=) ,

n=2 10
where xn 20 (n 2> 2) and
(2.9) : LA =1,
. n=2 o
ProOOF. Suppose that
(2.10) f(z) = nzzxnfn(z)
p(l - ) © (1-p)(1-o0)
=z - —_— e 27 - z - 4
2 n=3 n
p(l - o) ®
=z - - z2 - T az® s
2 n=3 &
where
N (L-p( - |
(2.11) a = An 20 (n> 3).
n .
Then we know that
(2.12) Ina = (L-p)(1-0a) I A
n=3 o n=3
2@ -p@0A -
which implies that f£(z) &€ t(a,p) by means of Theorem 1.
Conversely, we suppose that
p(l - o 2 ® n
(2.13) f(z) =z - — - I az (an > 0)
2 n=3

is in the class t(u,p). Then we have (2.4) for n > 3. Taking
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na

2.14) A, = - L (n 2 3)
1 -pI - o)
and
(2.15) - A, =1 - £ A,
2 n=3 B

we obtain the representation (2.8). This completes the proof of

the theorem.

3, DISTORTION THEOREMS

We need the following lemmas in order to-get the distortion

inequalities for functions £(z) belonging to the class t(a,p).

LEMMA 2, Let 0 <o <1,

| (10 + @) + /132 - 120 +a®
oL Rt 21 - a) | ’

-4(L - p) + /160 - 7 + 3p°(L - P - )
(3.2) rq = ,
P - PI(L - @)

and f3(z) be defined as in Theorem 2. Then

1- 1 - 1 - a)
p( a) 2 p)( » 3

2 ‘ 3

(3.3)  |£5@e*®] 2 -

for 0 < p < land 0 <t < 1. Equality is attained for 6 = 0. For

either 0 < p < Pg and 0 < r < o or»po b 1,

i (1 - 1-pA -
B8 Ewel® | cra 2 P 9 3
| 5 ;

with equality for 6 = w. Further, for 0 < p < Py and g 2 r < 1,

R r 1/2
(3.5)  |£5xel®| < ME-.{sz(l - ) + 16(1 - p)}
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2 1/2
1 1 - (1 - 1-
+ @ 2 + p)( a) rl" %
4(L - p) 6 36

with equality for 6 = 69> where

3' = cos
o 8(1 - OL)I'

ProoF, ‘ A simple computation gives that
8 i6y 2
(3.7) e |f3(re )|

1
= — (1 - a)r3sin 8 {3p + 8(L - p)rcos®
3

-p - P QA - o)),

Hence 8|f3(rele)]2/ae = Q for 6, = 0, by = 1 and by = 60. Further,

since 65 is a valid root only when [cos eol 2 1, we have a third

root if and only if rg 2T < land 0 < p < Pg- Consequently we can
ie

prove the lemma by comparing the extremal values |f3(re k)]

(k =1, 2, 3) on the appropriate intervals.

LEmMMA 3, Let the function fn(z) be defined by (2.7) and
n > 4. Then ' -

(3.8 £, (xel® | < £, (1) |

for 0 < r < 1.

ProoF, Since r™/n is a decreasing function of n (n > 4),

we can see that

rn

p(l - o) o d-p@a -
—_ r~ + - g

(3.9) £ (xe’®)| < x +
2 n
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p(l - o) , N d-p@a-o b
2 4

[A
2
ER
!
o]

—le_("r')
which implies (3.8). Thus the lemma is completed.

THEOREM 3, Let the function £(z) definedkby (1.5) be in the
class t(a,p). Then, for 0 < r < 1,

pl-® ,  @- p)(1 - o) .3
2 3

(3.10)  |£@e®®)| > ¢ -

with equality for the function f3(z) at z = r. Further, for

0<r<1,
(3.11) |£(re®®) | < Max{ Max|f5(re’®) |, -£,(-0)},
0
where Maxlf3(reie)l is given by Lemma 2.
¢}

We can prove the theorem by comparing the bounds of Lemma 2

and Lemma 3.

COROLLARY 3. Let the function £(z) defined by (1.5) be in
the class t(a,p). Then the unit disk {J = {z: [z| < 1} is mapped on

a domain that contains the disk |w| < (4 + 2a + pa - p)/6.

Lemma 4, Let 0 .o < 1,

-(4 4+ a) + /32 - 8a+a
(3.12) = - :

P17 2(1 - o)

21 - p) + (s - P+ A - DA - W)
p(1 - p)(L - o)

(3.13) ry =

and f3(z) be defined as in Theorem 2. Then, for 0 < p £ 1 and
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(3.14) 1£3e™® ] 2 1 - p(L - T - (L - P - W)’

with equality for 6 = 0. For either 0 < p < Py and 0 5 r < r, or

(3.15) 1£3xe™®) | <1+ p( - r - A - P - )’

with equality for 6 = n. Further, for 0 < p < Py and rp < 1,

160, . 2 172
(3.16) [fé(re I 2 {41 - p) +p°(1 = )}
1 1-a a-pa-w? b2
— + — T -+ — T )
4(1 - p) 2 4
with equality for 6 = 6> where
) 2
- p(l - p)(L - )" -
(3.17) 0 = cos L P _OL i .
4(1 - p)r

PROOF,  Since
0 18y 2
(3.18)  —— |£)(xe®)]
39 -
= 2(1. - o)rsin6 {p + 4(1 - p)rcos 8 - p(l - p)(l - o)r?},

a[fé(reie)iz/ae = 0 gives that 61 =0, by =7 and 63 = 60. Hence,

in the same way as in the proof of Lemma 2, we have the lemma.

LEMMA 5. Let the function £,(2) be defined by (2.7) and

n > 4. Then

A

(3.19) | £ e™®) | < £ (1) |

for 0 < r < L.
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1

PﬁOOF; Note that r™ * is decreasing in n (n > 4). This

implies that

(3.20) 1£2re™® | <1+ p(L - Wr+ (1 -pQA - L

fia

14+ p-ar+(L-p)(-ar

fia

f&(—r).

This completes the proof of the lemma.

THEOREM U4, Let the function f£(z) defined by (1.5) be in the
class t(a,p). Then, for 0 < r < 1,

(3.21) £ (xel® ] 51 - p(L - wr - (1 - p)(L - a)r?

with equality for the function f3(z) at z = r. Further, for

0<r <1,

(3.22) £ (ze*®) | < Max{ ng]fé(reie)|, £4(-1)1,

where Max]fé(rele)[ is given by Lemma 4.
G

The proof the the theofem is obtained by comparing the bounds

of Lemma 4 and Lemma 5.

COROLLARY 4, Let the function £(z) defined by (1.5) be in
the class t(a,p). Then f‘(z) includes a disk with its center at

the origin and radius o.

4, CLOSURE THEOREM

THEOREM 5., Let the functions

] p(l - a) ) ®
(4.1) ’ fi(z) =z - __—_E—___ z° - n£3an’iz (an,i 20
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be in the class t(a,p) for every i = 1, 2, 3, ..., m. Then the

function h(z) defined by

(4.2) ) h(z) = ? Cifi(z) : (c; 2 0)
i=1

is also in the same class t(a,p), where

INZR=]

(4.3) c, = 1.

i=1 *
Proor. By the definition of h(z), we have the following

expression

p(l - o) o @ m a

(4.4) h(z) = 2 - —— 2° - T % c.a i)z .
2 n=3 \ i=1 * 7’

Since fi(z) € t(a,p), in view of Theorem 1, we obtain that

©

(4.5) I s (1 - - p)

for i =1, 2, 3, ..., m. Hence we can show that

o m o
(4.6) In L c.a = C, L na_ .
> i=1 1‘<rF% n,1>

n=3 \ i=1 @ ®i
|
ci>\ T -0)@~-p)=( -0 -0p

by
T o\i=l

which gives that h(z) &€ t(a,p) with the aid of Theorem 1.

ey

IR

5. MopiF1ED HADAMARD PRODUCT

Let fi(z) (1 =1, 2) be defined by

- o n
(5.1) £,(2) =z - nizan’iz (3, 3 2 0).

Then we denote by fl*fz(z) the modified Hadamard product of fl(z)
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and f2(z), that is,

«©

(5.2) £13fy(2) =z - z an’lan’zzn .
n=2
THEOREM 6, Let the function f(z) defined by (1.5) Be in the
class t(a,p). Then the modified Hadamard product f£xf(z) belongs to
the class ((a(2-a),p2/2).

ProoF, The definition of modified Hadamard product gives

that

2 2 |
LT R
z - e—Z - Z anZ
4 » n=3

(5.3 £xf(z)

2
P o<}
=z = —— {1l- a2 - a)}z2 - T azzn .
n=3 T

p2/2 < 1/2, it suffies to prove

A

Since 0 < a(2 ~ o) <1 and 0

that

| 2
e, P
(5.4) Zna” < {1 - a(2 cx)}<l - ———-—>
n 2 i

i
A - w2 <1 - —>
2 i

by means of Theorem 1. But, in view of Theorem 1, we can see that

A

o, (L - a)(l -p) = 1 - oc)z(l - p)2
(5.5) L na I na <
n=3 o 2 n=3 2

»2
1 - o)? <1 - -—>
2

Thus we obtain that fxf(z) € C(a(2-0),p2/2).

A

A
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6. RADIT OF STARLIKENESS AND CONVEXITY

With Noshiro-Warschawski theorem, we know that the function
f(z) in t(a,p) is univalent in the unit disk |J. Then we determine
the radii of starlikeness and convexity for t(a,p).

A function £(z) of A is said to be starlike of order 8 if f£(z)

satisfies

z£'(z)
i % > z €

6.1) Re g —~
z

for some B (0 < B < 1). Further a function f(z) of J is said to be

convex of order 8 if £(z) satisfies

(6.2) Re 41 +

z£" (2)
— % > 8 z e W

£'(z)

for «ome B (0 < B < 1),

THEOREM 7. Let the function f(z)'defined by (1.5) be in the
class t(u,p)“ Then f(z) is starlike of order B (0 < B < 1) in the
disk |z]| < r,(0,8,p), where r;(a,8,p) is the largest value for

which
p(L - a)(l - B8) (L-p)(L-a)(n-8 .1
(6.3) T+ ' T

2 . n

A

-
'

w

for n > 3. The result is sharp.

ProoF. It is easy that.

p(1l - a) ® n-1
2" (2) ———_E____ r + nE3(n - l)anr
- -1 — (I - =
£(z) r- 1ax?!
2 n=3 ?

(6.4)

A

In

[
1

w
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for |z| < r < 1 if and only if

1 - 2 -8 w :
(6.5) P ¢ ) r+ I (n- e)anrn‘l

<1~ 8.
2 n=3

Since £(2z) gf‘t(a,p), by means of Theorem 1, we may set

-
(6.6) a = An (nz3)),
n
where A > 0 (n 2 3) and
6.7) 2 A < 1.
n=3 * 7

For each fixed r, choose the integer ny = n(x) for which

(n - B)rn"l/n is maximal. Then it follows that

@ _ (L -p)(L~-a)(n, - B) mn,-1
(6.8) I (n- Bar® ! < 0 r 0
n=3 i n n,
Consequently f(z) is starlike of order 8 in |z] < rl(a,s,p)
provided that
p(l - )(2 - 8) (1-p)(-amy-8 nyl
(6.9) r + r
2 n, '
<1-8.

Now, find the wvalue Ty = ro(u,s,p) and corresponding no(ro) so
that
p(l - ®)(2 - 8) (1-p@A -y -8 nyl

(6.10) r, + X
2 0 n, 0

=1 - B.

It is this wvalue T, that is the radius of starlikeness of order

8 of {(a,p).
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Finally we can see that the result of the theorem is charp

for the function f(2) given by (2.3).

CoROLLARY 5, Let the function f£(z) defined by (1.5) be in
the class ((a,p). Then £(z) is starlike in the disk |z| < xy(a,p),

where rz(a,p) is the largest value for which

p(L - o 1
(6.11) ———7;———-r' + (1 -p)(1 - r <1 (n > 3).

The result is sharp.
Proor. Putting 8 = 0 in Theorem 7, we have the corollary.

THEOREM 8, Let the function f(z) defined by (1.5) be in
the class t(u{p). Then £(z) is convex of order B (0 £ B < 1) in
the disk |z| <‘r3(a,6,p), where rs(m,e,p) is the largest value

for which

(6.12) p(l-)(2-Br+d-pA-wn - gzt

N

-
1

w

(n23).

The result is sharp.

ProoF. The function £(z) defined by (1.5) will be convex

of order  in the disk |z| < r for which

Zf"(Z) p(l - OC)I' + z n(n - l)anrn—l
(6.13) |———| < n=3
£'(z) 1 -p(1 - a)r - I na rn'l
n=3 o
1-8,
that is,
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[

(6.14) p(l - a)(2 - B)r + Z3n(n - s)anrn“
n=

A
=
]
»

1

In the same way as in the proof of Theorem 7, we can show the
theorem. Further the result of the theorem is sharp for the func-

tion £(z) given by (2.3).

Finally putting B = 0 in Theorem 8, we have the following

corollary,

COROLLARY b, Let the function f(z) defined by (1l.5) be in
the class t(a,p). Then f(z) is convex in the disk [z]| < r4(u,p),

where r4(a,p) is the largest value for which
(6.15) 2p(1 - &)r +n(d - p)(L - WL <1 (n > 3).

The result is sharp.
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