RELATIVE PARACOMPACTNESS AS TAUTNESS CONDITION IN SHEAF THEORY

Jean-Pierre SCHNEIDERS
Research Assistant F.N.R.S.

RESUME : Nous introduisons la paracompacité relative. Cette notion nous permet d'obtenir un critère de raideur qui unifie et généralise les résultats classiques de [2].

INTRODUCTION

Let X be a topological space, S a subset of X, Φ a family of supports in X and V_S the set of the open neighborhoods of S in X, ordered by the relation \supset . In this paper, we consider only sheaves of abelian groups. We say that S is Φ -taut in X if the canonical morphism

$$(r_{S}: \lim_{\psi \in V_{S}} H_{\phi \cap V}(v, F_{|V}) \longrightarrow H_{\phi \cap S}(S, F_{|S}))$$

is an isomorphism whenever F is a sheaf on X. In [2] G.E. Bredon proves that it is equivalent to say that the canonical morphism

$$(r_{SX} : \Gamma_{\Phi}(X,F) \longrightarrow \Gamma_{\Phi \cap S}(S,F|_{S}))$$

is onto and that $F_{\mid S}$ is $\Phi \cap S$ -acyclic whenever F is a flabby sheaf on X. The tautness appears in the hypothesis of many important theorems of sheaf theory. So, for pratical use, we need criteria stating that S is Φ -taut in X under more explicit topological assumptions on S and Φ . For example, it is trivial to see that an open subset of X is Φ -taut. In [2] it is proved that S is Φ -taut in X if one of the following conditions is satisfied:

a) Φ is paracompactifying for the pair (X,S)

Présenté par J. Schmets, le 21 juin 1984.

- b) Φ is paracompactifying, X is completely paracompact, S is arbitrary.
- c) Φ is paracompactifying, S is closed in X.
- d) Φ is maximum, S is compact and relatively Hausdorff in X. The purpose of this paper is to prove a tautness criterion wich unifies and generalizes the preceding ones. For this reason, we introduce in definition 1 the notion of relative paracompactness of S in X. We say that Φ is S-paracompactifying if every element of Φ has a neighbrhood belonging to Φ and if SOF is relatively paracompact in F whenever F belongs to Φ . Our main result states that S is Φ -taut in X if Φ is S-paracompactifying.

RELATIVE PARACOMPACTNESS

In order to avoid confusions, let us recall the following definitions.

An open covering of S in X is a set U of open subsets of X, such that $\bigcup U \supset S$. For a set U of subsets of X we write $U(S) = \{U : U \in U, U \cap S \neq \emptyset\}$. We say then that:

- a) U is punctually finite on S if $U(\{s\})$ is finite for every element s of S.
- b) U is locally finite on S if each element of S has a neighborhood V such that U(V) is finite.
- c) A S-refinement of an open covering U of S in X is an open covering V of S in X such that every element of V is contained in some element of U.

Now let us introduce the following

DEFINITION 1. The subset S of X is

- a) relatively Hausdorff in X if two distinct points of S have disjoint neighborhoods in X.
- b) relatively normal in X if two disjoint closed subsets of S have disjoint neighborhoods in X.
- c) $relatively\ paracompact\ in\ X$ if every covering of S in X has a S-refinement which is locally finite on S and if moreover S is relatively Hausdorff in X.

REMARK 2. It is clear that X is relatively Hausdorff (resp. normal; paracompact) in X if and only if X is Hausdorff (resp. normal; paracompact).

Slight modifications of classical proofs give the following three results.

PROPOSITION 3. If S is relatively normal in X and if U is an open covering of S in X which is punctually finite on S then there exists a family $(V_U)_{U \in U}$ of open subsets of X, covering S and such that \overline{V}_{II} is contained in U for every U belonging to U.

PROPOSITION 4. If F is a closed subset of S and if S is relatively paracompact in X then every open covering of F in X has a F-refinement which is locally finite on S. In particular F is relatively paracompact in X.

PROPOSITION 5. If S is relatively paracompact in X then S is relatively normal in X.

The following easy results are also usefull.

PROPOSITION 6. If S is relatively paracompact in X and if Y is a subset of X containing S then S is relatively paracompact in Y. In particular S is paracompact.

<u>Proof</u>: Let U be an open covering of S in Y. It is clear that there exists an open covering V of S in X such that $V \cap Y = U$. Thus there exists a S-refinement W of V which is locally finite on S. We see directly that $W \cap Y$ is a S-refinement of U in Y which is locally finite on S. To conclude, we just have to note that S is relatively Hausdorff in Y.///

PROPOSITION 7. If S has a fundamental system of paracompact neighborhoods in X then S is relatively paracompact in X.

<u>Proof</u>: Let U be an open covering of S in X. Let us choose a paracompact neighbourhood V of S in X contained in $\cup U$. Since $U \cap V$ is an open covering of V in V, there exists a V-refinement V of $U \cap V$ in V which is locally finite on V. Thus $V \cap V$ is a S-refinement of U in X which is locally finite on S. To conclude, it remains to prove that S is relatively Hausdorff in X. Let X, Y be two distincts elements of Y and Y a paracompact neighborhood of Y in X. Since Y is a Hausdorff space, there exist neighborhoods Y of X

INSTITUT DE PHYSIQUE
SARETEMAN
BIBLIOTHÉQUE

and y in W, such that $V_x \cap V_y = \emptyset$. But W is a neighborhood of x (resp. y) so that $V_x \cap V_y = \emptyset$ is a neighborhood of x (resp. y) in X. Thus x and y have disjoint neighborhoods in X.//

COROLLARY 8.

- a) A subset S of a completely paracompact space (e.g. a metric space) X is relatively paracompact in X.
- b) A closed subset S of a paracompact space is relatively paracompact in X.

 $\frac{\text{Proof}}{\text{Proof}}$: a) Since X is completely paracompact, every open subset of X is paracompact and we may apply proposition 7.

b) Since X is paracompact we know that X is normal and the closed neighborhoods of S in X form a fundamental system of paracompact neighborhoods of S in X. So we may apply proposition 7.///

PROPOSITION 9. If S is compact and relatively Hausdorff in X then S is relatively paracompact in X.

<u>Proof</u>: Let U be an open covering of S in X. Since $U \cap S$ is an open covering of S, there exists a finite subset V of $U \cap S$ which covers S. Let us choose a finite subset W of U such that $W \cap S = V$. Clearly W is a S-refinement of U which is locally finite on S. Since S is relatively Hausdorff in X, the proof is complete.///

A TAUTNESS CRITERION

PROPOSITION 10. If S is relatively paracompact in X then the canonical morphism

$$(r_{S}: \lim_{\stackrel{\rightarrow}{U \in V_{S}}} \Gamma(U, F_{|U}) \xrightarrow{} \Gamma(S, F_{|S}))$$

is an isomorphism for every sheaf F on X.

 $\frac{P \operatorname{roof}}{S}: \text{ It is clear that } r_{S} \text{ is injective, thus we just have to prove that it is onto. Let } \sigma \text{ be a section of } F \text{ over } S. \text{ For every } x \in S, \text{ let us choose a neighborhood } U_{X} \text{ of } x \text{ in } X \text{ and a section } s_{X} \text{ of } F \text{ over } U_{X} \text{ such that } s_{X} \mid U_{X} \cap S \text{ of } S \text{ otherwise } S \text{ of } S \text{ otherwise } S \text{ other$

We know that S is relatively paracompact in X and that $U = \{U_X : X \in S\}$ is an open covering of S in X, thus there exists a S-refinement V of U which is locally finite on S. For every V belonging to V, let us choose a an element X_V of S, such that $V \subset U_X$. Let S_V' denote the section $S_{X_V} \setminus V$. Since S is relatively normal in X, the proposition 3 gives us a family $(W_V)_{V \in V}$ of open subsets of X covering S and such that $W_V \subset V$ whenever $V \in V$. For every V belonging to V we denote by S_V'' the section $S_V' \mid \overline{W}_V$. Let us set

$$B = \bigcap_{U, V \in V} \{ y : (y \in \overline{W}_{U} \cap \overline{W}_{V}) \Rightarrow (s_{U}^{"}(y) = s_{V}^{"}(y)) \}.$$

We shall establish that B is a neighborhood of S. Let x be an element of S. Since V is locally finite on S there exists an open neighborhood ω of x in X such that $V(\omega)$ is finite. Let us set

$$\omega' = \omega \setminus (\bigcup_{\mathbf{x} \in \underline{V}(\omega)} \overline{\mathbf{w}}_{\mathbf{v}})$$

Clearly ω' is still a neighborhood of x in X and x \in $\overline{\mathbb{W}}_V$ if $\overline{\mathbb{W}}_V$ \cap ω' \neq Ø. Let us set

$$\omega'' = \omega' \cap \bigcap_{\overline{W}_{\overline{V}} \cap \omega' \neq \emptyset} \{ y : y \in V \cap U, s_{\overline{V}}'(y) = s_{\overline{U}}'(y) \}.$$

We see immediately that $\boldsymbol{\omega}^{\text{"}}$ is an open neighborhood of \boldsymbol{x} in \boldsymbol{X} and that

$$(y \in \omega'' \cap \overline{\mathbb{W}}_{\mathbb{V}} \cap \overline{\mathbb{W}}_{\mathbb{U}}) \Rightarrow (s_{\mathbb{V}}''(y) = s_{\mathbb{U}}''(y))$$

if U, V belong to V. Thus ω'' is contained in B and B is a neighborhood of x in X. Since x is an arbitrary point of S, this proves that S is contained in B. Now, since V is locally finite on S, we know that $\{W_V: V \in V\}$ is locally finite on an open neighborhood Ω of S in X. Let Ω' be the set $\Omega \cap (\bigcup W_V) \cap B$, clearly, Ω' is an open neighborhood of S in X. For overy $V \in V$ let V be the set V V V and let V be the section V V V V V V definition.

nes a closed locally finite covering of Ω' and $s_V''|_{F_V \cap F_U}$ equals $s_U''|_{F_V \cap F_U} \text{ if } U, V \in V. \text{ Thus there exists a section s of } F \text{ over } \Omega'$ such that $s_{|F_V} = s_V''$ if $V \in V$. This shows that $s_{|S} = \sigma$. Since σ is an arbitrary section of F over S, we have proved that r_S is onto.///

DEFINITION !!. The family of supports Φ is A-paracompactifying if every element of Φ has a neighborhood which belongs to Φ and if $F \cap A$ is relatively paracompact in F for every F belonging to Φ .

PROPOSITION 12. If Φ is S-paracompactifying and if F is a closed subset of S then Φ is F-paracompactifying.

<u>Proof</u>: Let F' be an element of Φ . We know that F' \cap S is relatively paracompact in F' and that F \cap F' is closed in F' \cap S, thus, by proposition 4, F \cap F' is relatively paracompact in F'.///

PROPOSITION 13. If Φ is S-paracompactifying, then

- a) $\Phi \cap S$ is paracompactifying in S,
- b) the canonical morphism,

$$(r_{S}: \lim_{U \stackrel{?}{=} V_{S}} \Gamma_{\Phi \cap U}(U, F_{|U}) \xrightarrow{} \Gamma_{\Phi \cap S}(S, F_{|S}))$$

is an isomorphism for every sheaf F on X,

c) $F_{\mid S}$ is $\Phi \cap S$ - soft for every flabby sheaf F on X.

 \underline{Proof} : a) If $F\in\Phi,\ F\cap S$ relatively paracompact in F and proposition 6 shows that F \cap S is paracompact.

b) Let F be a sheaf on X. It is clear that r_S is injective, so we just have to prove that it is onto. Let σ be a section of F over S with support belonging to $\Phi \cap S$. Let us choose an element F of Φ such that $\sup(\sigma) = F \cap S$ and a neighborhood F' of F belonging to Φ . Since $F' \cap S$ is relatively paracompact in F', proposition 10 shows that the section σ extends to a section σ' of F over a neighborhood V of $S \cap F'$ in F'. Let G be the set $\sup(\sigma')$. By construction, we know that $G \cap S \subseteq F' \cap S$ and that $F' \cap S \subseteq V$. Thus $S \setminus V$ is contained in $S \setminus G$. This proves that S is contained in the open set $(X \setminus G) \cup V$. Let us denote by Ω this open set and by σ'' the section of F over Ω which is equal to O on $X \setminus G$ and to $\sigma' \cap O$ on V. We see immediately that $\sigma \cap O \cap O$ and that $\sup(\sigma'') \cap O \cap O$. Since $G \subseteq F'$,

o" is an element of $\Gamma_{\Phi \cap \Omega}(\Omega, F_{\mid \Omega})$, such that $\Gamma_{S\Omega}(\sigma") = \sigma$. Since σ is an arbitrary element of $\Gamma_{\Phi \cap S}(S, F_{\mid S})$ we have proved that $\Gamma_{S}(S, F_{\mid S})$ we have proved that $\Gamma_{S}(S, F_{\mid S})$ we have proved that $\Gamma_{S}(S, F_{\mid S})$ we have elements of $\Gamma_{S}(S, F_{\mid S})$ we have elements of $\Gamma_{S}(S, F_{\mid S})$ we know, by proposition 12, that $\Gamma_{S}(S, F_{\mid S})$ is an open neighborhood what is proved above shows that there exists an open neighborhood $\Gamma_{S}(S, F_{\mid S})$ of $\Gamma_{S}(S, F_{\mid S})$ such that $\Gamma_{S}(S, F_{\mid S})$ such that $\Gamma_{S}(S, F_{\mid S})$ is a section $\Gamma_{S}(S, F_{\mid S})$ such that $\Gamma_{S}(S, F_{\mid S})$ such that $\Gamma_{S}(S, F_{\mid S})$ is clear that $\Gamma_{S}(S, F_{\mid S})$ and an element $\Gamma_{S}(S, F_{\mid S})$ is a section $\Gamma_{S}(S, F_{\mid S})$ such that $\Gamma_{S}(S, F_{\mid S})$ is an arbitrary section of $\Gamma_{S}(S, F_{\mid S})$ we have proved that $\Gamma_{S}(S, F_{\mid S})$ is $\Gamma_{S}(S, F_{\mid S})$ is $\Gamma_{S}(S, F_{\mid S})$ is $\Gamma_{S}(S, F_{\mid S})$ is an arbitrary section of $\Gamma_{S}(S, F_{\mid S})$ we have

CRITERION 14. If Φ is S-paracompactifying then S is Φ -taut.

Proof: It is an easy consequence of the preceding proposition if we remember that an open subset of X is Φ -taut and that a Φ -soft sheaf is Φ -acyclic if Φ is paracompactifying.///

REMARK 15. If S satisfies the condition a) (resp. b); c); d)) then proposition 7 (resp. 7; 7; 9) shows that Φ is S-paracompactifying and the preceding result shows that S is Φ -taut.///

I would like to thank Professor J. SCHMETS for his valuable advice.

REFERENCES

- [1] N. BOURBAKI, Algèbre. Chap. 10, Masson, Paris, (1980).
- [2] G.E. BREDON, Sheaf Theory, Mc Graw-Hill, (1967).
- [3] H. CARTAN & S. EILENBERG, Homological Algebra, Princeton University Press, (1956).
- [4] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Herman, Paris, (1964).
- [5] A. GROTHENDIECK, Sur quelques points d'algèbre homologique, Tôhoku Math. Journ. t. IX (1957), pp. 119-221.
- [6] A. GROTHENDIECK & J. DIEUDONNE, Eléments de géométrie algébrique, Publications mathématiques I.H.E.S., N° 4, 8, 11.
- [7] M. KASHIWARA, T. KAWAI, T. KIMURA, Daisukaisekinokiso, Kinokunyia shoten, Tokyo, (1980) (en japonnais).
- [8] H. KOMATSU, Cohomology of morphisms of sheafed spaces, J. Fac. Sci. Univ. Tokyo. Sect. I, 18 (1971), pp. 287-327.
- [9] M. SATO, Theory of hyperfunctions I(II), J. Fac. Sci. Univ. Tokyo. Sect. I, 8 (1959), pp. 139-193. (387-437).

- [10] J.-P. SERRE, Faisceaux algébriques cohérents, Ann. Math. 61 (1955), pp. 197-278.
- [11] E.H. SPANIER, Algebraic Topology, Mc Graw-Hill, New York, (1966).
- [12] J.-L. VERDIER, Catégories dérivées, dans SGA $4\frac{1}{2}$, Lecture notes in Mathematics, $\underline{569}$, (1977).

Université de Liège Institut de Mathématique Avenue des Tilleuls, 15 B-4000 LIEGE, Belgique.