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Abstract. After the Wheeler-DeWitt equation is solved pertur-
batively for the quantum cosmological wavefunction, it can be
maximized to determine the most probable configurations. This
method also distinguishes between the different types of boundary
conditions.

1. Introduction

Infinities which arise in the perturbative quantization of the Einstein-
Hilbert action and supergravity are known to be absent from super-
string theories in ten dimensions. This includes the elimination of
large-order divergences that occur in field theories and bosonic string
theories which can be removed after the introduction of supersymme-
try, BRST symmetry and modular invariance.

The ten-dimensional heterotic string theory, which is anomaly-free at
one loop and predicts phenomenologically viable gauge groups through
a reduction to four dimensions, gives rise to a four-dimensional effec-
tive action containing only scalar and metric fields, after setting all
other fields equal to zero. This model represents a modification of the
action for general relativity and a scalar field. In addition to the Ricci
scalar and the kinetic term for the dilaton field, there is a quadratic
term with a coupling to a scalar field [1], and the theory has nonsin-
gular classical solutions which would ameliorate the regularity of the
quantum cosmological model. It has been demonstrated that, amongst
the classical solutions of the four-dimensional model, there are metrics
that approximately describe the K = 0 Friedmann-Robertson-Walker
space-time [4]. This space-time is cosmological background with expo-
nential expansion and it admits supersymmetry [7]. At first order in an
expansion in powers of a sigma-model parameter, the heterotic string
effective action is a quadratic gravity theory, which is unitary because
the curvature combination is a Gauss-Bonnet term, dynamically non-
trivial as a a result of the coupling of the scalar factor through a factor
e−Φ

g24
and has improved renormalizability properties [5].

Renormalizability in the generalized sense has been established only
the coupling of scalar fields to curvature terms of linear and quadratic
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order [10]. These results are not extended to quartic curvature terms
which are considered in with the heterotic string effective action. Nev-
ertheless, the heterotic string theory has known finiteness properties,
and the equivalence of the quartic sector with a higher-derivative super-
Yang-Mills theory [9] confirms the relevance of the quantum quan-
tum cosmological wavefunction with the inclusion of quartic curvature
terms. Nevertheless, during the inflationary epoch, the reduction in
the magnitude of the higher-order curvature terms extends to quartic
combinations, and the overall weighting of the quartic sector would be
determined by the balance between the number and coefficients of such
terms and the reduced magnitude.

The wavefunctions represent solutions to a Wheeler-DeWitt equa-
tion, which, being the operator equivalent of a classical equation, would
yield the probability distribution of an ensemble of metric and matter
fields Therefore, an analogy with kinetic equations in many-body prob-
lems is evident. It would represent a smooth, macroscopic version of a
stochastic quantization of gravity [12]. The extrema of the probability
distributions, based on the no-boundary and tunneling wavefunctions
and corrections derived for the quadratic model, are determined. The
normalization of these wavefunctions depends on the the finiteness of
the L2 norm. When it is finite, the wavefunction may be divided by
the normalization factor. If the L2 norm is infinite, conditional prob-
abilities may be used. Nevertheless, the maximization of |Ψ(a, V )|2
indicates the most probable configurations.

2. Second-Order Wheeler-DeWitt Equation

The quadratic action with a potential term equals
(2.1)

I =

∫
d4x

√
−g
[
1

κ2
R+

1

2
(DΦ)2+

e−Φ

4g24
(RµνκλR

µνκλ−4RµνR
µν+R2)−2V (Φ)

]
.

Restriction to the minisuperspace of Friedmann-Robertson-Walker met-
rics

(2.2) ds2 = dt2 − a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2θdϕ2)

]
the one-dimensional action after the addition of a boundary term is

(2.3) I =

∫ [
6a(−ȧ2 +K) +

1

2
a3Φ̇2 + 2

e−Φ

g24
ȧ(ȧ2 + 3K)− 2a3V (Φ)

]
.

Canonical quantization of this action begins with the momenta

Pa = −12aȧ+ 6
e−Φ

g24
Φ̇(ȧ2 +K)(2.4)

PΦ = a3Φ̇ + 2
e−Φ

g24
ȧ(ȧ2 + 3K).
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The Wheeler-DeWitt equation to first order in e−Φ

g24
is

HΨ =

(
H0 +

e−Φ

g24
H1

)
Ψ = 0

(2.5)

H0 =
1

24a

∂

∂a

1

a

∂

∂a
− 1

2a3
∂2

∂Φ2
− 6aK + 2a3V (Φ)

H1 =
1

a4

(
K

4
− 1

576a4

)
∂

∂a
+

1

576a7
∂2

∂a2
− 1

1728a6
∂3

∂a3

+
1

a5

(
7K

4
− 35

576a4

)
∂

∂Φ
+

1

2a8
∂2

∂a∂Φ
− 1

64a7
∂3

∂a2∂Φ2
+

1

864a6
∂4

∂a3∂Φ
.

If |V | is not significantly less than one, the semiclassical approximation
is not valid and higher orders of quantum gravity become important.
The quadratic gravity action is renormalizable in the generalized sense
and can be viewed as sufficient for the inclusion of higher-order curva-
ture terms. To first order in e−Φ

g24
, this equation is fourth-order if the

Φ derivatives are included and third-order when the Φ derivatives are
not included.

For a slow-roll potential,

∣∣∣∣V −1 dV
dΦ

∣∣∣∣≪ 1 and the second-order Wheeler-

DeWitt equation, derived from the differential operator H0, becomes
an Airy equation

d2ψ

dz2
+ zψ = 0(2.6)

z = −K
(
18

V

) 2
3
(
1− a2V

3K

)
K ̸= 0

with basis solutions Ai(−z) and Bi(−z). If K = 0, a and V do not

have to be rescaled and z may be chosen to be (4V )−
2
3a2V = 4−

2
3a2V

1
3

[4]

To first order in e−Φ

g24
,

(2.7)

(
H0 +

e−Φ

g24
H1

)(
Ψ0 +

e−Φ

g24
Ψ1

)
≈ 0

and H0

(
e−Φ

g24
Ψ1

)
≈ − e−Φ

g24
H1Ψ0. The derivatives of Ψ can be regarded

as negligible in the slow-roll approximation, where the potential is ap-
proximately flat near the initial vacuum. Let

(2.8) H0 = Hslow−roll
0 − 1

2a3
∂2

∂Φ2
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and

(
Hslow−roll

0 − 1

2a3
∂2

∂Φ2

)(
e−Φ

g24
Ψ1

)
=
e−Φ

g24
Hslow−roll

0 Ψ1 −
1

2a3
e−Φ

g24
Ψ1 +

1

a3
e−Φ

g24

∂Ψ1

∂Φ

(2.9)

− 1

2a3
e−Φ

g24

∂2Ψ1

∂Φ2
.

When ∂2Ψ0

∂Φ2 is kept in H0Ψ0, the solution is given by the product of
a Bessel function with an index dependeing on ν and eiνΦ, and it is
customary to choose the ground state mode with ν = 0. After setting
the derivatives ∂Ψ1

∂Φ
and ∂2Ψ1

∂Φ2 equal to zero, the term 1
2a3

e−Φ

g24
Ψ1 is not

large for e−Φ

g24
< 1, a ≫ 1. During the inflationary epoch, it can be

neglected in comparison with 6aKΨ1.

3. No-Boundary Wavefunction

The no-boundary wavefuncion [11][13] is

(3.1) Ψ0NB =
Ai(−z)
Ai(−z0)

=
Ai
(
K
(
18
V

) 2
3

(
1− a2V

3K

))
Ai
(
K
(
18
V

) 2
3

)
when K = 1 or −1. While the no-boundary wavefunction is defined
by a path integral over compact four-manifolds, corresponding to the
conventional choice K = 1, the other values of K are possible if the
range of coordinates in the flat or hyperbolic sections is finite.

Even if the classical solution for a(t) has a lower bound greater than
zero, the wavefunction still can take values at a = 0, since the min-
isuperspace {a,Φ} includes a = 0. If K = 0, and z is set equal to

2−
2
3a2(2V )

1
3 , this variable would vanish at a = 0, and a normalization

factor such as Ai(−zc), zc = z(ac), where ac > 0 can be used.
To analyze these wavefunctions, the following asymptotic formulae

are useful:

Ai(z) ∼ 1

2
√
π
z−

1
4 e−

2
3
z
3
2 z → ∞(3.2)

Ai(−z) ∼ 1√
π
z−

1
4 sin

[
2

3
z

3
2 +

π

4

]
.

In the asymptotic expansion of Ai(−z0) as z0 = −K
(
18
V

) 2
3 → −∞

for K = 1, the normalization factor tends to 2
√
π(−z0)

1
4 e±

2
3
(−z0)

3
2 if

K = 1. Thus the exponential prefactor is e±
2
3
(−z0)

3
2 = e±12K

3
2

V . The
negative sign favours inflation, whereas the positive sign favours V = 0.
When K = 0, the change in the sign across the V (Φ) = 0 boundary
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leads to different asymptotics for the wavefunction. If the positive sign

for the exponent in the prefactor is e±
2
3
(−zc)

3
2=e±

1
3a3c |2V |

1
2

[5].
As (−z) → ∞, and the conventional sign is chosen is chosen in the

exponential,

Ψ0NB(z) →
(
a2V

3K
− 1

)− 1
4

e
−i· 12

V

(
a2V
3K

−1
) 3

2
+ iπ

4 eK

12
V.(3.3)

The probability distribution then would be

p(a, V ) = |G|
1
2 (a) |Ψ0NB|2 = |G|

1
2 (a)

(
a2V

3K
− 1

)− 1
2

eK
3
2

24
V .(3.4)

where GAB is the minisuperspace metric [8]. Since |G| 12 depends only
on a in the minisuperspace of Friedmann-Robertson-Walker metrics, it
will not affect the vanishing of the derivative of the probability with
respect to V , and the extrema would remain unchanged.

For an unnormalized distribution, p(a, V ) is maximized at V =
0. Probabilities are not larger than 1, and a cut-off is required. If
(Ψ∗Ψ)max(a, V ) = 1 when

(3.5) 2a2V = 6K

(
1 + e

48K
3
2

V

)
then

(3.6) e
48
V = e

a2

16
1

1 + e
48
V

.

Let w = e
48
V such that

(3.7) (1 + w)ln w =
a2

16
and

(3.8) V = 48

{
ln

[ a2

16

ln
(
a2

16

) − 1

]}−1

for a2 ≫ 16.

For a2

16
≪ 1, w ≃ 1. If w = 1 + ϵ,

(3.9) ln w = ln(1 + ϵ) = ϵ− ϵ2

2
+
ϵ3

3
− ... =

a2

16
· 1

2 + ϵ
=
a2

32

and

(3.10)
48

V
≃ a2

32
.

From both Eqs. (3.8) and (3.10), a2V > 3K within the range of validity
for the classically allowed region.

Consider the vanishing of dp
dV

given by

(3.11) 4a2V (−48K
3
2 ) + 576K

5
2 − 4a2V 2 = 0
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which has the solution

(3.12) V =
1

4

[
− 96K

3
2 ± 1

a2
· 96K

3
2a2
[
1 +

2304

9216

K
5
2

K3a4

] 1
2
]
.

The positive root 3K
a4

− 3
16

K
1
2

a8
+ ... is not located within the classically

allowed region.
The wavefunction in the classical forbidden region [4] [13]

(3.13) Ψ0NB =
1

2

[
1− a2V

3K

]− 1
4

exp

[
12K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

)]

yields the probability distribution
(3.14)

p(a, V ) =
1

4
|G|

1
2

[
1− a2V

3K

]− 1
2

exp

[
24K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

)]
.

Normalization of this probability distribution follows from the inte-
gral
(3.15)∫ ∫

p(a, V )dadV =
1

4

∫ ∫
|G|

1
2

[
1−a

2V

3K

]− 1
2

exp

[
24K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

)]
dadV

Letting V → 0,

24K
3
2

V

[
1−

(
1− a2V

3K

) 3
2
]
=

24K
3
2

V

[
3

2

a2V

3K
− 3

8

(
a2V

3K

)2

+ ...

](3.16)

= 12a2K
1
2 − a4V

K
1
2

+ ... .

Since a2V
3K

< 1, a4V

K
1
2
< 3a2K

1
2 and 12a2K

1
2−a4V

K
1
2
+ ... > 9a2K

1
2 . Finite-

ness of the integral (3.15) in the neighbourhood of V = 0 occurs only
if there is an upper bound for the scale factor determined by the infla-

tionary interval or a normalization factor of the form 4|G|− 1
2 e−Ba2K

1
2

for some B > 9. This factor can be included if the conditional prob-

ability distribution p(a,V )
p(a|V→0)

is used. It follows from Eq.(3.16) that

p(a|V → 0) ≈ 1
4
|G| 12 eBa2K

1
2 .
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Then

∫ ∫
p(a, V )

p(a|V → 0)
dadV

(3.17)

=

∫ ∫ 1
4
|G| 12

(
1− a2V

3K

)− 1
2
exp

[
24K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

)]
1
4
|G| 12 eBa2K

1
2 da dV

=

∫ ∫
e−Ba2K

1
2

(
1− a2V

3K

)− 1
2

exp

[
24K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

)]
da dV

and there is no divergence in the limit V → 0 and a→ ∞.
Setting B = 12, a normalization of the wavefunction would be given

by
(3.18)

1

N

∫ ∫
da dV e−12a2K

1
2

[
1−a

2V

3K

]− 1
2

exp

[
24K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

)]
= 1.

Let ỹ =
(
1− a2V

3K

) 1
2
such that V = 3K

a2
(1− ỹ2). Then the condition is

(3.19) −6K

N

∫ ∫
da dỹ

e−12a2K
1
2

a2
exp

[
8a2K

1
2

ỹ2+ỹ+1
ỹ+1

]
= 1.

When V is very negative,
(
1− a2V

3K

) 3
2 ≫ 1, and the increasing expo-

nential would be unbounded as V → ∞. If the integration range for

V is chosen to be

[
− V0,

3K
a2

]
, the integrand will be regular there is a

minimum value a0 for the scale factor a. The normalization would be
given by

(3.20)
6K

N

∫ ∞

a0

∫ y0

0

e−12a2K
1
2

a2
exp

[
8a2K

1
2
ỹ2 + ỹ + 1

ỹ + 1

]
= 1.

Since N is a constant, it would not affect the extremum of the condi-
tional probability distribution with respect to V .

Let a2V
3K

= y < 1. Then the integral equals

(3.21)
1

4
(1− y)−

1
2 e−Ba2K

1
2

∫
dV exp

[
36K

3
2

y
− 9K

3
2
y2+...V

]
An upper bound for the potential Vmax is necessary for finiteness be-
cause

exp

[
36K

3
2 y−9K

3
2 y2+...

V

]
→ 1 as V → ∞. With a coefficient dependent
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only on a, the condition of the vanishing of the derivative with respect
to V is unchanged. Then

dp

dV
= |G|

1
2
a2

24K

[
1− a2V

3K

]− 3
2

exp

[
24K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

)](3.22)

+
1

2

[
1− a2V

3K

]− 1
2
{(

−12K
3
2

V 2

)(
1−

(
1− a2V

3K

) 3
2

+
48K

3
2

V

(
1− a2V

3K

) 1
2
(
a2

3K

)}

· exp
[
24K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

)]

which equals zero if

[
a2V

6K
−
(
1− a2V

3K

)(
24K

3
2

V

)]2
=

(
1− a2V

3K

)3(
1 +

a2V

6K

)(
24K

3
2

V

)2

.

(3.23)

Then y = 0 or
(3.24)

y4 + y3 − 5y2 +

((
V

24K
3
2

)2

+ 4

(
V

24K
3
2

)
+ 3

)
y − 4

(
V

24K
3
2

)
= 0.

Then (
a2V

3K

)4

+

(
a2V

3K

)3

− 5

(
a2V

3K

)2

(3.25)

+

((
V

24K
3
2

)2

+
V

6K
3
2

+ 3

)(
a2V

3K

)
− V

6K
3
2

= 0

Dividing by V ,

8V 3 + 4

[
6K

a2
+

1

(48)2K3

(
6K

a2

)3 ]
V 2 + 2

[
− 5

(
6K

a2

)2

+
1

12K
3
2

(
6K

a2

)3 ]
V

(3.26)

+

[
3− 1

2a2K
1
2

](
6K

a2

)3

= 8V 3 + 4

[
6K

a2
+

3

32a6

]
V 2 −

[
180K2

a4
− 36K3 3

2

a6

]
V +

[
3− 1

2a2K
1
2

](
6K

a2

)3

= 0.
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Given the parameters for the cubic equation (2V )3+α(2V )2+β(2V )+
γ = 0,

pα,β = −α
2

3
+ β = −1

3

[
6K

a2
+

3

32a6

]2
−
[
180K2

a4
− 18K

3
2

a6

](3.27)

= −192

a4
+

18K
3
2

a6
− 3K

16a8
− 3

1024a12

qα,β = 2
(α
3

)3
− αβ

3
+ γ

=
1

a6

(
304K3 − 72K

5
2

a2
− 17K2

4a4
+

9K
3
2

16a6
+

3K

512a8
+

1

16384a12

)
For the K = 0 Friedmann-Robertson-Walker space-time,

Q(K = 0) =

[(p
3

)3
+
(q
2

)2 ]
K=0

(3.28)

=
1

12

(
− 1

1024a8

)3

+
1

a12

(
1

32768a12

)2

= − 1

230a36
+

1

230a36
= 0

The solutions to the cubic equation when K = 0 are

V (1) = − 3

64a6
(3.29)

V (2) = V (3) = 0

Since the signature is (+−−−), it is consistent with that of the space-
time background in conventional inflationary models with a grand uni-
fied potential. There, the exponential expansion occurs in a deSitter
phase with a positive cosmological constant resulting from a positive
extremum of the potential.

In a supersymmetric string theory, a negative cosmological term can
be derived initially from the Kähler potential, and, in the K = 0
Friedmann-Robertson-Walker space-time, the scale factor is exponen-
tial. For example, the effective scalar potential

VF =
1

8(Re T )3

{
1

3
|2(Re T )W ′ − 3W |2

}
(3.30)

W = W0 + Ae−aT

yields a vacuum with a negative cosmological term [3]. The form of
the potential between this minimum and the axis of vanishing V is
comparable with that required by maximization of the probability dis-
tribution.
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Since the signature is (+−−−), it is consistent with that of the space-
time background in conventional inflationary models with a grand uni-
fied potential. Therefore, the exponential expansion occurs in a deSit-
ter phase with a positive cosmological constant resulting from a positive
extremum of the potential. The inflationary potential in grand unified
theories can be derived from a superpotential

VB(Φ) =
e−3σ0

16
g24e

Φ|W (S)|2
[
1− 2S

W ′(S)

W (S)

]2
(3.31) [

− 1 + 2S
W ′(S)2 −W (S)W ′′(S)

W (S)2

]−1

W (S) = c+ h

(
3S

b0

)
e
− 3S

2b0

with S = e−Φ

g24
, where Φ is the dilaton field, g4 is the four-dimensional

string coupling and b0 defined for the gauge group after setting the mod-
ulus field equal to zero [2]. The parameters c and h can be chosen such

that

∣∣∣∣V ′
B(Φ)

VB(Φ)

∣∣∣∣≪ 1 and

∣∣∣∣V ′′
B (Φ)

VB(Φ)

∣∣∣∣≪ 1 for sufficiently large Φ and inflation

occurs. While the antisymmetric tensor field and the gaugino conden-
sate are known to introduce terms in the potential which can break
supersymmetry, the minimum value of the potential remains zero, and
it is lifted in higher-order perturbation theory at non-zero temperature
[2]. At the extremum, supersymmetry is not preserved. The time for
the decrease of the effective potential to zero can be maximized with
respect to the expectation values of the gauge singlet fields.

A more general form of the potential is necessary. Given that the
probability distribution is maximized for a rapid decrease of a neg-
ative potential, it would represent the end of an interval of expan-
sion of the universe generated by the scale factor of a metric admit-
ting superymmetry-generating spinors [4]. The expression for V in
Eq.(3.30) with a negative extremum does not have the form of a slow-
roll potential required for an extended inflationary epoch. Instead, the
standard positive potential derived for grand unified theories is nec-
essary. It would follow that the interval of inflation passes through a
supersymmetric phase to an exponential expansion without supersym-
metry.

For arbitrary real values of z,

(3.32) p(a, V ) = |G|
1
2
|Ai(−z)|2

|Ai(−z0)|2
.

From the derivative

(3.33)
dz

dV
=

2K

3
(18)

2
3V − 5

3

(
1 +

a2V

6K

)
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it follows that
(3.34)

dp

dV
= |G|

1
2

2|Ai(−z)|
[
|Ai(−z0)||Ai′(−z)|

(
− dz

dV

)
− |Ai(−z)||Ai′(−z0)|

(
−dz0

dV

) ]
|Ai(−z0)|3

when any discontinuity in the derivative would be discarded. It van-
ishes when

|Ai(−z0)Ai′(−z)|
(
−2K

3

)
(18)

2
3V − 5

3

(
1 +

a2V

6K

)(3.35)

− |Ai(−z)Ai′(−z0)|
(
−2K

3

)
· (18)

2
3V − 5

3 = 0.

For positive values of the Airy function and its derivative,

(3.36) Ai(−z) = exp

[
Ai′(−z0)
Ai(−z0)

∫
d(−z)
1 + a2V

6K

]
Since ∫

d(−z)(
1 + a2V

6K

) =

∫
d(−z)

− 3
2K

(18)−
2
3V

5
3
d(−z)
dV

(3.37)

= −2K

3
(18)

2
3

∫
V − 5

3dV

= K

(
18

V

) 2
3

= −z0.

and

(3.38) Ai(−z) = exp

[
− z0

Ai′(−z0)
Ai(−z0)

]
.

The solution to the third-order differential equation resulting from
the inclusion of the derivatives in the scale factor in H1, and the van-
ishing of derivatives with respect to the scalar field, has an additional
term containing the Airy functions

Ψ =

(
1 + C1

e−Φ

g24

)
Ai(−z) + C2Bi(−z)

(3.39)

+ C3
e−Φ

g24

72π

Ai
(
K
(
18
V

) 2
3

)Bi(−z) · ∫ da

a3

[
−KAi′(−z) + 1

36

(
V

18

) 2
3

Ai′′′(−z)
]
Ai(−z)

− C4
e−Φ

g24

72π

Ai
(
K
(
18
V

) 2
3

)Ai(−z) · ∫ da

a3

[
−KAi′(−z) + 1

36

(
V

18

) 2
3

Ai′′′(−z)
]
Bi(−z).
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Since p(a, V ) = N(a)Ψ∗(a, V )Ψ(a, V ),

(3.40)
dp

dV
= N(a)

[
dΨ∗(a, V )

dV
Ψ(a, V ) + Ψ∗(a, V )

dΨ(a, V )

dV

]
.

Setting C2 = C3 = 0 for regularity, and substituting the expression
(3.1), the derivative dΨ

dV
equals

(
1 + C1

e−Φ

g24

)
d

dV
Ai(−z)(3.41)

− 2C1
e−Φ

g24
V ′(Φ)−1Ai(−z)

− 72πC4
e−Φ

g24
e−iπ

4

(
a2V

3K
− 1

)− 1
4

e−
12K

3
2

V∫
da

a3

[
−Kf1Ai

′(−z) + 1

18
2

2
3V f3Ai

′′′(−z)
]
Bi(−z)

+ 2C4
e−Φ

g24
V ′(Φ)−1 72π

Ai
(
K
(
18
V

) 2
3

)Ai(−z)
·
∫
da

a3

[
−KAi′(−z) + 1

36

(
V

18

) 2
3

Ai′′′(−z)
]
Bi(−z)

where f1 and f3 are conversion factors for the derivatives with respect
to the definition of z with the potential V replaced by 72K

3
2V . It may

be noted that, for a ≫ 1, z → 1

(4V )
2
3
(24a2K

1
2V ) = 12K

1
2

2
1
3
a2V

1
3 . The

integral over a yields a function that decreases rapidly with respect to

a, and an overall factor of (a
2V
3K

− 1)−
1
2 e−

24K
3
2

V arises. The extremum
will not be shifted far from the value derived previously.

The solutions to the field equations correspond to most probable
configurations. For K = 0 metrics,

(3.42) Ψ0NB =
Ai(2−

1
3a2V

1
3 )

Ai(2−
1
3a2cV

1
3 )
.

Then

(3.43) Ψ0NB
−→
V ≫ 1

(ac
a

) 1
2
e−

√
2

3
(a3−a3c)V

1
2

and there is a maximum of Ai(−z) at ϵ∗ such that

−2−
1
3a2V

1
3 = ϵ∗(3.44)

V = −2
ϵ∗3

a6
.
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Suppose that potential has the form [7]

a(t) = a0e
λt

(3.45)

Φ(t) ≃
√
C(t− t0) +D

V (Φ) ∼ e−
3σ0
16 k21 +

(
2k1k2 −

9k21
b20

)
e−Φ

g24
+

(
k22 −

243

24b20
k21 −

5k1k2
b0

)
e−2Φ

g44
+ ... .

The equality between the leading terms in the potential occurs when

(3.46) −2
ϵ∗3

a6
= k2

e−2Φ

g44
or

−2ϵ∗3a−6
0 e−6λt ≈ k2

g44
e−2

√
Cte−2D(3.47)

λ =

√
C

3

−2ϵ∗3a−6
0 =

k2
g44
e−2D.

4. The Tunneling Wavefunction

The tunneling wavefunction, defined by the condition i ∂Ψ
partiala

> 0,

is given by a different combination of the basis of Airy functions [13]

(4.1) ΨT =
Ai(−z) + iBi(−z)
Ai(−z0) + iBi(−z0)

.

In the classically allowed range,

(4.2) |Ψall.
0T |2 =

1

π2

[
a2V

3K
− 1

]− 1
2

e−
24K

3
2

V

such that the derivative with respect to the potential vanishes when

(4.3) − a2

12K
+

(
a2V

3K
− 1

)(
24K

3
2

V

)
= 0.

The roots of the equation

(4.4) 4V 2 − 192K
3
2V + 576

K
5
2

a2
= 0

are

In the classically forbidden region [14],

(4.5) Ψfor.
0T =

(
1− a2V

3K

)− 1
4

exp

(
−12K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

))
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and the probability distribution is
(4.6)

p(a, V ) = (−G)
1
2

(
1− a2V

3K

)− 1
2

exp

(
−24K

3
2

V

(
1−

(
1− a2V

3K

) 3
2

))
.

With a negative sign in the exponential, as V → 0,
(4.7)

−24K
3
2

V

(
1−

(
1− a2V

3K

) 3
2

)
= −12a2K

1
2 +

a4V

2K
1
2

− ... < −9a2K
1
2

and the integral would converge for a ∈ [0,∞] and V ∈ [0, Vmax] with-
out a conditional probability distribution because

(4.8)

∫ ∞

0

dV (1− y)−
1
2 exp

[
− 48K

3
2

V

(
3

2
y − 3

8
y2 + ...

)]
<∞

when Vmax is bounded.
The derivative vanishes when

(4.9)

a2V

6K
+

(
1− a2V

3K

)(
24K

3
2

V

)
= −

(
1− a2V

3K

) 3
2

(
24K

3
2

V

)(
1 +

a2V

3K

)
or
(4.10)

8V 3+4

[
6K

a2
+

3

32a6

]
V 2−2

[
180K2

a4
+
18K

3
2

a6

]
V+

[
3+

1

2a2K
3
2

](
6K

a2

)3

= 0

From the parameters

pαβ = −192K2

a4
− 18K

3
2

a6
− 3K

16a8
− 3

1024a12
(4.11)

qαβ =
304K3

a6
+

72K
5
2

a8
− 17K2

4a10
− 9K

3
2

16a12
+

3K

512a14
+

1

16384a18

it may be deduced that Q = 0 for K = 0 Friedmann-Robertson-
Walker space-times. Again, the solutions for the potential are given
by Eq.(3.26).

5. A Solution by Matrix Methods

Another form of the Wheeler-DeWitt equation can be derived by
matrix methods. By Eq.(2.4),

(Pa + 12aȧ)ȧ = 6
e−Φ

g24
Φ̇ȧ
(
ȧ2 +K)(5.1)

(PΦ − a3Φ̇)Φ̇ = 2
e−Φ

g24
Φ̇ȧ(ȧ2 + 3K).
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Then

(5.2) (Pa − 12aȧ)ȧ− 3(PΦ − a3Φ̇)Φ̇ = −12K
e−Φ

g24
Φ̇ȧ.

which has the form

(5.3)
(
ȧ Φ̇
)( −12a 6K e−Φ

g24

6K e−Φ

g24
3a3

) ȧ

Φ̇

 = (−Pa 3PΦ)

 ȧ

Φ̇

 .

The linear equation has the solution

(5.4)

 ȧ

Φ̇

 =
1

12
(
a4 +K2 e−2Φ

g44

) ( −a3 2K e−Φ

g24

2K e−Φ

g24
4a

) −Pa

3PΦ


and

ȧ =
1

12
(
a4 +K2 e−2Φ

g24

) (a3Pa + 6K
e−Φ

g24
PΦ

)
(5.5)

Φ̇ =
1

6
(
a4 +K2 e−2Φ

g44

) (−Ke−Φ

g24
Pa + 6aPΦ

)
.

The Hamiltonian is

(5.6) H = −6

(
a− e−Φ

g24
Φ̇ȧ

)(
ȧ2 +K

)
+

1

2
a3Φ̇2 + 2a3V (Φ).

Substituting the expressions for ȧ and Φ̇ in the Hamiltonian gives

H = −6

[
a− e−Φ

g24

1

6
(
a4 +K2 e−2Φ

g44

) (−Ke−Φ

g24
Pa + 6aPΦ

)(5.7)

· 1

12
(
a4 +K2 e−2Φ

g44

) (a3Pa + 6K
e−Φ

g24
PΦ

)]
[ 1

12
(
a4 +K2 e−2Φ

g44

) (a3Pa + 6K
e−Φ

g24
PΦ

)2

+K

]

+
1

2
a3
[

1

6
(
a4 +K2 e−2Φ

g44

) (−Ke−Φ

g24
Pa + 6aPΦ

)]2
+ 2a3V (Φ).
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In the limit e−Φ

g24
→ 0,

lim e−Φ

g24
→0
H = H0 = −6a ·

(
1

12a4
a3Pa +K

)2

+
1

2
a3
(

1

a6
P 2
Φ

)
+ 2a3V (Φ)

(5.8)

= − 1

24

1

a
Pa

1

a
Pa − 6aK +

1

2a3
P 2
Φ + 2a3V (Φ).

With Pa → −i ∂
∂a

and PΦ → − ∂
∂Φ

, the standard form of the leadinng
order differential operator in the Wheeler-DeWitt equation is recovered
for gravity coupled to a scalar field.

(5.9) H0Ψ =
1

24a2
∂2Ψ

∂a2
− 1

24a3
∂

∂a

∂Ψ

∂a
−6aKΨ− 1

2a3
∂2Ψ

∂Φ2
+2a3V (Φ)Ψ.

The O
(

e−Φ

g24

)
part of the Hamiltonian is

e−Φ

g24
H ′

1 = 6
e−Φ

g24

1

6a4
· 6aPΦ

1

12a4
a3Pa

((
1

12a
Pa

)2

+K

)
(5.10)

− 6a
1

12a4

[
a3Pa

1

12a4
6K

e−Φ

g24
+ 6K

e−Φ

g24
PΦ

1

a
Pa

]
+

1

2
a3

1

6a4

(
−6K

e−Φ

g24
Pa

1

6a3
PΦ − 6K

a3
PΦ

(
e−Φ

g24
Pa

))
and the differential operator is

H ′
1 = − 1

2a4
∂2

∂a∂Φ

(
− 1

144

1

a

∂

∂a

1

a

∂

∂a
+K

)
+
K

4

(
2

a4
∂2

∂a∂Φ
− 4

a5
∂

∂Φ

)(5.11)

+
K

2a

(
2

a3
∂2

∂a∂Φ
− 1

a3
∂

∂a
− 3

a4
∂

∂Φ

)
=

1

288a4
∂2

∂a∂Φ

(
1

a

∂

∂a

1

a

∂

∂a

)
+K

(
1

a4
∂2

∂a∂Φ
− 1

2a4
∂

∂a
− 5

2a5
∂

∂Φ

)
=

1

288a6
∂4

∂a3∂Φ
− 1

288a7
∂3

∂a2∂Φ
+K

(
1

a4
∂2

∂a∂Φ
− 1

2a4
∂

∂a
− 5

2a5
∂

∂Φ

)
Again, the next term in the expansion of Ψ can be solved iteratively
through the equation

(5.12) H0

(
e−Φ

g24
Ψ1

)
= −e

−Φ

g24
H ′

1Ψ0.

The extrema of Ψ0 with the two boundary conditions have been given
in §3 and §4. These would be shifted infinitesimally by the addition of
e−Φ

g24
Ψ1.
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6. The Most Probable Value of the Hypersurface Curvature

A cosmological background solving the equations for the scale factor
and the dilaton has been derived for the Lagrangian containing only
the first derivative of a(t) with the inclusion of the heterotic string po-
tential. The metric is that of the K = 0 Friedmann-Robertson-Walker
space-time, and consistent supersymmetric physical theories can be for-
mulated on this expanding geometry [7]. The condition of ah path inte-
gral over four-manifolds with compact three-sections would require the
K = 1 model in the minisuperspace of Friedmann-Robertson-Walker
metrics. The viability of these two cosmological metrics is indicative
of the possible three-geometries that could be included in the path
integral over four-manifolds. The restriction to compact manifolds
without boundaries would be confirmed by higher probability for the
K = 1 metrics. This could be followed by a matching with the K = 0
Friedmann-Robertson-Walker space-time at a boundary between the
Planck scale and the inflationary epoch.

The no-boundary condition yields a probability distribution that is
extremized by a negative potential, and a metric admitting supersymmetry-
generating spinors is a solution to the gravitational field equations.
Since supersymmetry is considered to present in the fundamental quan-
tum theory of the universe at the earliest times, this result is indicative
of the choice of compact four-manifolds from the Friedmann-Robertson-
Walker with K = 1, 0,−1.

A Mellin transform of the closed-form differential equation for the
wavefunction, where Ψ∗(s, a) =

∫∞
0
ws−1Ψ(w, a)dw, produces a differ-

ence differential equation [14] for Ψ∗(s, a)

L1(s, a)E
2
1Ψ

∗(s, a) + L2(s, a)E1Ψ
∗(s, a) + L3(s, a)Ψ

∗(s, a) = 0

(6.1)

L1(s, a) = −K(s+ 1)(s+ 2)D2
2

+
1

4a6
[s6 + 11s5 + 50s4 + 125s3 + 205s2 + 242s+ 152]

L2(s, a) = a2
g24
6
(s+ 1)(aD3

2 + 6D2
2) +

3

2
g24(a(s+ 1)D2 + (s+ 1)3)

+ ag24(s+ 1)2(s+ 2)D2

L3(s, a) = a4g44[4a
3D2 + a4D2

2]

E1Ψ
∗(s, a) = Ψ∗(s+ 1, a).

After specifying the first two values Ψ ∗ (0, a) and Ψ ∗ (1, a), the solu-
tion to this two-variable recursion relation for large s and the inverse
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transform yields

Ψ(w, a) ≈ 1

2πi

∫ γ+iN0

γ−iN0

Ψ∗(s, a)w−sds

(6.2)

+
1

2πi

∫ γ+i∞

γ+iN0

(−1)s
(4a6)s−2

Γ(s− 2)3

[
ag24D2 +

3

2
g24

]s−2

w−sds ·
[
KD2

2 −
38

a6

]−1

{
a
g24
6
(aD3

2 + 6D2
2)Ψ

∗(1, a) +
3

2
g24

(
5

3
aD2 + 1

)
Ψ∗(1, a)

+ a4g44(4a
3D2 + a4D2

2)Ψ
∗(0, a)

}
+

1

2πi

∫ γ+iN0

γ−i∞
(−1)s

(4a6)s−2

Γ(s− 2)3

[
ag24D2 +

3

2
g24

]s−2

w−sds ·
[
KD2

2 −
38

a6

]−1

{
a
g24
6
(aD3

2 + 6D2
2)Ψ

∗(1, a) +
3

2
g24

(
5

3
aD2 + 1

)
Ψ∗(1, a)

+ a4g44(4a
3D2 + a4D2

2)Ψ
∗(0, a)

}
where D2Ψ

∗(s, a) = d
da
Ψ∗(s, a) and integration is defined over an imag-

inary line with real part γ, which can have an infinitesimal value to
be located away from any potential singularities of the integrand, al-
though it may be set equal to zero because 1

Γ(s)
is nonsingular in the

complex s plane.
At the origin of the expansion in this quantum cosmological model,

lima→0Ψ(w, a) =
1

2πi
lima→0

∫
γ−iN0

γ + iN0Ψ
∗(s, a)w−s

(6.3)

− 1

2πi
lima→0

∫ γ+iN0

γ−iN0

(−1)s
(4a6)s−2

Γ(s− 2)3

[
ag24D2 +

3

2
g24

]s−2

w−sds

·
[
KD2

2 −
38

a6

]−1{
g24

(
a

6
(aD3

2 + 6D2
2) +

3

2

(
5

3
aD2 + 1

))
Ψ∗(1, a)

+ a4g44(4a
3D2 + a4D2

2)Ψ
∗(0, a)

}
.

Since lima→0

[
KD2

2 − 36
a6

]−1

→ a6

38
when Ψ∗(0, a) and Ψ∗(1, a) are reg-

ular in a, the second integral vanishes in this limit [6]. However, it
is possible still to distinguish between K = 1, 0,−1 three-sections for
a ̸= 0. The functions
g24
(
a
6
(aD3

2 + 6D2
2) +

3
2

(
5
3
aD2 + 1

))
Ψ∗(1, a) and g44a

4(4a3D2+a
4D2

2)Ψ
∗(0, a)
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can be expanded in an orthonormal basis of eigenfunctions of the op-
erator KD2

2 − 38
a6
, corresponding to the eigenvalues λ1n and λ0n. In

the region near the maximum values of these two functions D2
2 will

be negative, implying that KD2
2 − 38

a6
is negative for K = 1 and the

approximated by a truncated series consisting of eigenfunctions with
negative eigenvalues. It follows that the second term in Eq.(6.2) would
have the same sign as the first if the other factors in the integral com-
bine constructively with integral of 1

2πi
Ψ∗(s, a) for |s| ≤ N0 and a > 0

before the beginning of the inflationary era.
For s = iy, −N0 ≤ y ≤ N0,

(−1)sa6sw−s =

(
−a

6

w

)iy

(6.4)

= e−πye
iy ln

(
a6

w

)
= e−πy

[
cos

(
y ln

(
a6

w

))
+ i sin

(
y ln

(
a6

w

))]
whereas

(6.5) Γ(iy − 2)3 =
1

(iy − 2)3(iy − 1)3(iy)3
Γ(iy + 1)3

implying that the remaining terms have the form

i

2π2

∫ −iγ+N0

−iγ−N0

dye−πy y
3(y + i)3(y + 2i)3

Γ(iy + 1)3

(6.6)

[
cos

(
y ln

(
a6

w

))
+ i sin

(
y ln

(
a6

w

))]
[
ag24D2 +

3

2
g24

]iy−2[ ∑
n∈Imax,1

λ−1
1n c1nψ1n(a) +

∑
n∈Imax,0

λ−1
0n c0nψ0n(a)

]
where Imax,0 and Imax,1 are the index sets representing the major con-
tribution of the series expansion of the two functions near the maxima.
An evaluation of real and imaginary parts of the expression (6.6) would
be sufficient to determine the change in the magnitude from the sum
of the first and second integrals. If the summation is constructive,
compact four-manifolds at the Planck time, compatible with the no-
boundary condition, are favoured.

7. Conclusion

The quadratic gravity model was used to determine the most proba-
ble configuration through extremization with respect to the potential.
For large values of the scale factor, without the time derivative of the
scalar field approximately zero, a constant value for the potential was
found. The extremum was shown to be shifted infinitesimally with the
inclusion of the next-order term in the Hamiltonian. This result would
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be altered by the introduction of the time-dependence of the scalar
field, which is consistent with the final states of inflationary potentials.
The maxima of the probability distributions, defined by the vanishing

of dp
dV

and d2p
dV 2 < 0, represent viable physical configurations if the values

of V at the critical points are compatible with inflationary expansion.
The description of cosmology with the no-boundary condition is sup-
ported by the existence of a wavefunction that is regular in the limit
a→ 0 and consistent in the inflationary epoch. The wavefunctions are
defined for a class of metrics for which the scale factor a(t) is not spec-
ified. A comparison can be made between the extrema and solutions
to the fields equations, including those found for the K=0 Friedmann-
Robertson-Walker metrics. Within this class of metrics, the potential
was required to decrease rapidly as a function of the scale factor, and a
swift end to the first phase of the inflationary epoch would be predicted.
It is likely that such a solution could be relevant only towards the end
of the interval of inflation. More generally, the maxima of the probabil-
ity distribution may be used to determine the cosmological parameters
for these configurations.
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