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DISTRIBUTIVE SEMILATTICES AND BOOLEAN LATTICES

by J. C. VARLET (%)
RESUME

Nous montrons que, dans la définition classique d’un lattis de Boole comme lattis
distributif compléments, le mot lattis peut étre remplacé par demi-lattis. La notion de
0-distributivité, introduite dans [°], est appliquée ici aux A -demi-lattis et caractérisée
comme suit : un A -demi-lattis borné est O-distributif si et seulement si tout filtre
maximal est premier. Le théoréme de séparation dii & Stone est étendu aux demi-lattis :
un A -demi-lattis filtrant ‘supérieurement est distributif si et seulement si tout couple
formé d’un filtre et d’un idéal disjoints peut étre séparé par un filtre premier. Enfin il
est établi que le théoréme de Nachbin (un lattis distributif borné est booléen si eb
seulement si filtres premiers et filtres maximaux coincident) reste vrai si 'on substitue
a I’adjectif distributif les mots « trés faiblement complémenté », ¢’est-d-dire : P'idéal zéro
est le noyau d’une seule congruence, 'identité.

1. INTRODUCTION

It is well known (and the result is due to Nachbin [7]) that a bounded distri-
butive lattice is Boolean if and only if every prime filter is maximal. In a recent
paper [1], D. Adams tried to weaken Nachbin’s conditions and obtained the following
result : a lattice L is Boolean if it satisfies the conditions
(a) L is bounded;

{(b) L is weakly complemented;
©)

(

(d) any filter of Li is maximal if and only if it is prime.

any ideal of L is maximal if and only if it is prime;

Jertainly the hypothesis of distributivity is suppressed, but conditions (c)
and (d) are both very strong since double-sided. Consequently it seems inadequate
to claim that Nachbin’s condition has been replaced by a « much weaker condition »,
owing to the supplementary fact that weak complementedness and distributivity
are completely independent.

We shall show that the previous conditions are redundant : (a), (b) and (d) are
sufficient and (b) can even be weakened. More precisely, if in Nachbin’s statement
we replace distributivity by 0-distributivity, a weakened form that we introduced
in [9], the additional assumption of very weak complementedness is needed (theo-
rem 4).

But in the beginning of our paper we are concerned with semilattices. We first
show that a bounded A -semilattice which is distributive and complemented is a
Boolean lattice (theorem 1). Then the meaning of O-distributivity in an up-directed
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A -semilattice is clarified : O-distributivity is equivalent to the fact that any maximal
filter is prime (theorem 2). Thereafter we establish that the distributivity of an
up-directed A -semilattice can be characterized, as in the case of lattices, by the
possibility of separating by a prime filter any filter F and any ideal I such that
Nnl=g.

2. PRELIMINARIES

Throughout this paper the word semilaitice will mean A -semilattice, i.e. a set
with an associative, commutative and idempotent binary cperation. A partially
ordered set A such that for any x, y € A, the set of upper bounds of {a, b} is not
void, is said to be up-direcied.

A filter of a semilattice 8 is a non-empty subset F of S such that xAye ¥ if
and only if g e ¥ and b€ ¥. The principal filter generated by an element a of 8,
ie. the set {x:x€8, v > a}, will be denoted by [a). A filter F of 8 is prome if,
whenever two filters Fy and ¥y are such that @ £ Fy N Fy CF, then F; or Fy
belongs to F. A proper filter ¥ is mawximal if the only filter strictly containing F
is S. When S has a least element 0, a proper filbter ¥ is maximal if and only if,
for any a €8 — I, there exists an element b € F such that a Ab = 0.

An ideal T of a semilattice S is a non-empty subset of S such that
L) y<zand zelimply yel;

(Is) for any =, y € I, there exists z& 1 such that z >z and z > y.

The notions of prime and maximal ideals can be defined in the same way as for
filters. In an up-directed semilattice S, a filter ¥ is prime if and only if § — ¥ is
an ideal of S.

We warn the reader that what we call filter (resp. ideal) is usuaﬂy named
ideal (resp. filter). Our convention makes it possible to apply the theory of A -semi-
lattices to the study of lattices without any change of terminoclogy : a subset of a
lattice L = (L; v, A is a filter (resp. an ideal) if and only if it is a filter (vesp.
an ideal) of L = (L; A ).

The concept of distributive semilattice is due to G. Grétzer and B. T. Schraidt [3].
It has been investigated by T. Katritidk [5], J. Varlet [10], G. Grétzer [*] and
J. Rhodes [8]. A semilattice is distributive if ¢ == a Ab (0, b, c€ 8) implies the existence
of a1, by € 8 such that ay 2= a, by > b and a; Aby = c. A lattice is distributive if and
only if it is distributive as a semilattice.

In [®] we introduced the notion of 0-distributive lattice, in order to generalize
that of pseudo-complemented lattice. As a matter of fact the concept of O-distri-
butivity applies to semilattices bounded below. A semilattice S with least element 0
will be said O-distributive if, for any a €8, the subset T = {xe8:2Aa =0} is an
ideal. In the same way we can define a 1-distributive semilattice.

A semilattice S with 0 is weakly complemented if it satisfies one of the three
equivalent conditions :

(C1) for any pair a,b (2 < b) of elements of 8, there is an element ¢ such that
anc=0and bacz0;

(Cy) for any pair a, b of distinct elements of 8, there exists an element ¢ disjoint
from one of these elements but not from the other;

(Cs) for any pair a, b of distinet elements of 8, there is a maximal filter containing
one of them but not the other,



Finally we shall make use of another notion introduced by G. Grétzer and
2. T. Schmidt in [2], p. 152 : a lattice with 0 is very weakly complemented if the zero
ideal is the kernel of a unigque congruence, the identity.

3. MAIN RESULTS

Our terminology will be coherent only if 0-distributivity and l-distributivity
are implied by distributivity in any bounded semilattice. Fortunately we have .:

Lemma. A distributive semilattice with O (vesp. 1) is O-distributive (vesp. 1l-dis-
tributive).

Proof. Let S be a distributive semilattice with 0. We have to show that for
any s €S, I = {z:2xAa = 0} is an ideal. Let b, ¢ be any two elements of I. From
b>=anrc =0, we deduce the existence of elements ¢, ¢ such that d>a,e>=cand
dAae =b. The element ¢ is an upper bound of {b, ¢} and belongs to I since
ent =ceA{and) = (erd)ra =0bbra = 0.

The second part is also easy to establish. In the distributive semilattice S
with 1, F = {x: 2va = 1} is not empty and contains y 2> x whenever it contains w.
Tt remains to show that z, y € F implies x Ay € F. Let k be any upper bound of
aand x Ay. Since k = x Ay, there exist m, n such that m =2, n =y and mAn = k.
From m > a and m >z, we deduce m = 1. Similarly n = 1, hence k = 1.

The notion of complement makes sense in any partially ordered set P with
least element 0 and greatest element 1. Precisely, b is a complement of o if the only
upper bound of ¢ and b is 1 and their only lower bound is 0. We shall express
this fact by avb =1 and aab = 0 even when the operations A and v are
undefined for some pairs of P.

The classical definition of a Boolean lattice can be improved as follows.

Theorem 1. A bounded distributive A -semilattice is a Boolean lattice if and only
if it s complemented.

Proof. The «only if » part is obvious. To establish the «if» part, we first show
that in a bounded distributive A -semilattice §, when an element ¢ has a comple-
ment @/, this complement is unique and ¢’ = a*, the dual pseudo-complement of a.
Let us suppose both elements b and ¢ are complements of ¢ in S. By the lemma,
there is no loss of generality in assuming b > c. Since ¢ > a A b =0, there exist x, ¥
such that # >a, y > b and x Ay = ¢. Bubt then x> a and » > ¢ imply z = 1,
hence y = ¢, which contradicts y = b. Clearly the unique complement o’ of @ is the
least element of 8 whose join with @ is equal to 1; in other terms, o' = a™.

The next observation is that when ¢ and b are both complemented and « = b,
then o’ < #' : complementation in a distributive A -semilattice is order-reversing.
Tn fact, bvz = 1 <> > b+. From a > b and bvbt = 1, we deduce av bt =
and bt = at.

We are now in a position to prove that any bounded, distributive and comple-
mented A -semilattice S is a (Boolean) lattice. Let a, b be any pair of elements of S;
o', b’ their respective complements. Let us show @ and b have a least upper bound.
If @/ Ab = ¢, then ¢" = ¢ is an upper bound of ¢ and b. We will show that ¢ is
precisely the least upper bound of ¢ and 6. Let @ be an upper bound of @ and b
satisfying @ < ¢. Owing to the distributivity of S, we have for any upper bound d
of  and z:d>¢ =a' Ab = e, fre=a/, f=b and enf=d. Bute>a' and
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e(z=d =) > a imply e = 1. Similarly, f = 1 hence d = 1. The element 2 would
be a second complement of ¢/, a contradiction. In conclusion, any pair of S has
a supremum and S is a lattice. Since a lattice is distributive if and only if it is
distributive as a semilattice, the proof is over.

Theorem 2. A bounded semilattice is O-distributive if and only if any maximal
filter is prime (¥).

Proof. First let us consider a semilattice S in which any maximal filter is
prime. We have to prove that S is O-distributive, that is, for any a €S, the set
I'={weS:anxz =0} is an ideal. For any pair b, ¢ of I, the set of all upper
bounds of b and ¢ is a filter F. The set G = {y €S : y = anf, feF}is also a filter.
If G is distinet from 8, it is contained in a maximal filter M. By hypothesis M is
prime and, since [b) N [¢) = F C M, either [b) CM or [¢) C M. But be M (or ¢ € M)
would imply 0 &M, a contradiction. Hence G = S, there exists feF such that
anf =0 and consequently b, ¢ have in I the upper bound f.

Let us now consider a O-distributive A -semilattice S. Let F be a maximal
filter which is not prime : there exist two filters G and H such that G " HC F,
but neither G C ¥ nor HC F. So we can find x¢ G —F and ye H— F. Since F
is maximal, there exist z and ¢ in F such that x Az = y At = 0. Since x A (zAt) =
yA(zat) =0, an element u >,y can be found satisfying u A (zAt) = 0. Since
%, 2, ¢ all belong to ¥, F contains 0, a contradiction.

Stone characterized distributive lattices by means of the following separation
property : a lattice is distributive if and only if when a filter ¥ and an ideal T are
disjoint, there exists a prime filter containing F and disjoint from I. This result
can be generalized to semilattices as follows.

Theorem 3. An up-directed semilattice is distributive if and only if for any filter F
and any ideal 1 such that F N1 = &, there exists a prime filter containing F and
disjoint from 1.

Proof. The necessity of the condition has been proved in [6], theorem 2. Now
we establish the sufficiency. Let us consider any three elements a, b, ¢ such that
¢z aArb. We denote by Fy (resp. Fs) the (non-empty) set of upper bounds of a
and ¢ (resp. b and ¢). 'y and Ty are filters, as wellas F = {z > 2 ay : 2 F,ye ol
Let us suppose F does not contain ¢. By hypothesis there exists a prime filter P
containing F but not ¢. Since [a) M [¢) = F1 C P and P is prime, ¢ has to belong
to P. For a similar reason P contains 6. Consequently, ¢ >> a Ab is in P, a contra-
diction. In conclusion, F contains ¢, that is, there exist d >> @ and ¢ >> b such that
dae = ¢, qed.

Comment. Theorem 3 provides us with a sufficient condition for an up-directed
semilattice to be distributive and it is surprising that the fact is mentioned neither
in [6] nor in [*]. Let us consider the following separation properties of the semi-
lattice S.

(P1) when an ideal and a filter are disjoint, they can be separated by a prime

filter;
(P2) a filter and an element not belonging to it can be separated by a prime
filter;

(*) The hypothesis of boundedness can be replaced by the slightly weaker one :
the semilattice is bounded below and up-directed.
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(P;) an ideal and an element not belonging to it can be separated by a prime
filter;

(P3) any two distinet elements can be separated by a prime filter.

The corresponding properties with maximal filter instead of prime filter will be

denoted by (M;). Clearly (P;) implies (P;) and (B;) implies (M;) whenever 1 < j. We

point out that (Ms) is nothing else than (Cg).

The proof of theorem 3 shows that (Py) is a sufficient condition for an up-directed
semilattice to be distributive. It is natural to ask whether (P3) would suffice to
ensure distributivity. We conjecture the answer is no. If the answer were affirmative,
it would lead directly (by using definition (U3) of weak complementedness and
theorems 2 and 3) to the following proposition : an up-directed, O-distributive and
weakly complemented semilattice is distributive. This statement has been proved
for lattices in [9]. Maybe the next step would be (by using theorem 1) : a bounded
weakly complemented semilattice is Boolean if and only if prime and maximal
filters coincide.

Furthermore example (D) below shows that weak complementedness does not
imply (My) : it suffices to consider the filter [1) and its set-complement, which is
an ideal. Does weak complementedness imply (My)? Here also an affirmative answer
would imply (by using theorem 2) the same conclusions as above. All this explains
why we shall concentrate in our last theorem on lattices and not on semilattices.
The best result we can provide is :

Theorem 4. A bounded very weakly complemented lattice L is Boolean if and only
1f prime and maximal filters of Li coincide.

Proof. The necessity of the condition is well known. To show its sufficiency
we first observe that by theorem 2 L is O-distributive. Consequently the relation ~
defined by a~b iff aanz = 0 is equivalent to bAax = 0, is a congruence with
kernel {0} (see theorem 3 of [9]). Since L is also very weakly complemented, ~ has
to be the equality relation and condition (Ms) is fulfilled. Condition (P3) is also satis-
fied and we can conclude that L is distributive. To complete the proof, it remains
to put forward Nachbin’s statement.

4. FINAL REMARK

Theorem 4 includes four conditions :
(1) L is bounded;
(2) L is very weakly complemented;
(3) every maximal filter of L is prime (0-distributivity);
(4) every prime filter of L. is maximal.
To prove their independence we consider the following examples :
(A) Generalized Boolean lattice, i.e. a distributive and relatively complemented
lattice bounded below but without greatest element.
(B) Five-element non-modular lattice.
(C) Five-element modular but non-distributive lattice.

(D) Lattice (A) to which we adjoin a maximum element 1.
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Tt is easy to make sure that each of these lattices satisfies all conditions but
one. (A) is not bounded. (B) is not very weakly complemented. Maximal and prime
filters coincide as in (A). (C) is not O-distributive and has no prime filter. Finally
condition (4) is not satisfied by (D) since the prime filter [1) is not maximal.

We note that a lattice which satisfies (1), (2) and (3) but not (4) is necessarily
infinite. Indeed we observed in [?] that a O-distributive lattice which is compactly
generated is pseudo-complemented. Since a pseudo-complemented and very weakly
complemented lattice is Boolean, a finite lattice satisfying (1), (2) and (3) also

fulfils (4).
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