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Abstract 
Engineered nanomaterials (ENMs) already became part of our daily life, f.i. as food 
supplements and in food packaging. With an increasing number of ENMs present in 
consumer and industrial products, the risk of human exposure increases and this may 
become a threat to human health and the environment. The dietary consumption of NPs in 
developed countries is indeed estimated at ca. 1012 particles/person, each day 
Possible toxic endpoints, which are not unique to ENMs, are e.g. cytotoxicity, stimulation 
of an inflammatory response, generation of reactive oxygen species (ROS) and/or 
genotoxicity. 
The gastrointestinal tract (GIT) is a complex barrier-exchange system and is one of the 
most important routes for macromolecules to enter the body, as well as a key actor of the 
immune system. To date, little is known about the toxicokinetic and toxicodynamic 
processes following oral exposure, particularly in relation to ingestion of ENMs that are 
present in food. 
Nanotechnology offers a wide range of opportunities for the development of innovative 
products and applications in agriculture, food production, processing, preservation and 
packaging. However, the present state of knowledge still contains many gaps preventing 
risk assessors from establishing the safety for many of the possible food related 
applications of nanotechnology 
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Introduction 
 
Nanotechnology is a rapidly evolving field of research and industrial innovation with many 
potentially applications. Engineered nanomaterials (ENMs) already became part of our 
daily life as food packaging agents, drug delivery systems, therapeutics, biosensors, etc.  
In 2011, according to the Woodrow Wilson Nanotechnology Consumer Products 
Inventory, Ag nanoparticles (Ag-NPs) were the most commonly consumed ENMs, 
followed by TiO2, SiO2, ZnO, Au, Pt, … (http://www.nanotechproject.org). By the most 
recent definition of European Parliament and Council [1] ‘nanomaterial’ (NM) is any 
material that is characterized to have at least one dimension ≤ 100 nm, or that comprises of 
separate functional parts either internal or on the surface, which have one or more 
dimensions ≤ 100 nm, including structures, e.g. agglomerates or aggregates, which may be 
larger than 100 nm, but which retain the typical properties of nanoscale. 
In many countries ENMs are already used as food supplements and in food packaging: (i) 
nanoclays as diffusion barriers [2]; (ii) Ag-NPs as antimicrobial agent [3,4]; (iii) silicates 
and aluminosilicates (E554, E556, E559) as anti-caking and anti-clumping agents and in 
toothpastes, cheeses, sugars, powdered milks, etc [5]; (iv) TiO2 (E171) for whitening and 
brightening, e.g. in sauces and dressings, in certain powdered foods [6], etc. According to 
FAO/WHO report [7] the ENMs have several current or projected applications in the 
agro‐ food sector: nanostructured food ingredients; nanodelivery systems; organic and 
inorganic nanosized additives; nanocoatings on food contact surfaces; surface 
functionnalized NMs; nanofiltration; nanosized agrochemicals; nanosensors; water 
decontamination, ... 
With an increasing number of ENMs present in consumer and industrial products, the risk 
of human exposure increases and this may become a threat to human health and the 
environment [8]. Individual ENMs may lead to one or more endpoints, which are not 
unique to NMs, but which need to be taken into account, e.g. cytotoxicity, stimulation of 
an inflammatory response, generation of reactive oxygen species (ROS) and/or 
genotoxicity. Although the exact mechanism underlying the potential NPs toxicity is yet to 
be elucidated, studies have suggested that oxidative stress and lipid peroxidation regulate 
the NP-induced DNA damage, cell membrane disruption and cell death [9-12]. It has been 
suggested that ROS, in turn, modulate intracellular calcium concentrations, activate 
transcription factors, induce cytokine production [13], as well as lead to increased 
inflammation [14,15]. Small sized metallic NPs, e.g. Ag-NPs, TiO2, Co-NPs may also 
cause DNA damage [16-20]. In vitro studies with different types of NPs (metal/metal 
oxide, TiO2, carbon nanotubes, silica) on various cell lines have demonstrated oxidative 
stress-related inflammatory reactions. It is believed that this response is largely driven by 
the specific surface area of the NPs and/or their chemical composition [21-25]. Typically, 
the biological activity of particles increases with the particle size decrease [26-29]. 
Moreover, depending on their chemistry, NPs show different cellular uptake, subcellular 
localization and ability to induce the ROS production [30]. On the contrary, there are also 
cases reported of NPs having anti-inflammatory properties, such as certain Ce oxide [31] 
and Ag-NPs [32]. Nanocrystalline Ag has been demonstrated to have antimicrobial and 
anti-inflammatory properties and was found to reduce colonic inflammation following oral 
administration in a rat model of ulcerative colitis, suggesting that nanosilver may have 
therapeutic potential for treatment of this condition [32]. 
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To sum up, based on the information currently available, no generic assumptions can be 
made regarding the toxicity upon exposure to ENMs, their endpoints and the implications 
of different organs and tissues. 
 
Behavior and fate of ENMs in the gastrointestinal tract 
 
The gastrointestinal tract (GIT) is a complex barrier-exchange system and is one of the 
most important routes for macromolecules to enter the body, as well as a key actor of the 
immune system. The epithelium of the small and large intestines is in close contact with 
ingested materials, which may then become absorbed by the villi. To date, studies on 
exposure, absorption and bioavailability are mainly focused on the inhalation and dermal 
routes, and little is known about the toxicokinetic and toxicodynamic processes following 
oral exposure, particularly in relation to ingestion of ENMs that are present in food. 
ENMs can reach the GIT either after mucociliary clearance from the respiratory tract after 
being inhaled [33], or can be ingested directly in food, water, drugs, drug delivery devices, 
etc [8,34]. The dietary consumption of NPs in developed countries is estimated around 1012 
particles/person per day, consisting mainly in TiO2 and mixed silicates [35]. It has been 
shown that several characteristics, such as: (i) the particle size [36], (ii) surface charge 
[37], (iii) attachment of ligands [38,39], (iv) coating with surfactants [40], as well as (v) 
the administration time and dose [41] affect the fate and extent of ENMs absorption in 
GIT. The published literature on the safety of oral exposure to food-related ENMs 
currently provides insufficient reliable data to allow a clear safety assessment of ENMs 
[42] that is connected primarily with inadequate characterization of ENMs [43]. For 
instance, it has been demonstrated that smaller particles cross the colonic mucus layer 
faster than larger ones [37]. The NPs kinetics in the GIT also depends strongly on their 
charge, i.e. positively charged latex particles remain trapped in the negatively charged 
mucus, while negatively charged ones diffuse across the mucus layer and their interaction 
with epithelial cells becomes possible [41]. 
NPs that pass the mucus barrier may be translocated through the intestinal epithelium, 
which will depend not only on physicochemical characteristics of NPs [36-41], but also on 
the physiological state of the GIT [44]. The translocation of NPs potentially used as food 
components through the GIТ remains to be explored [45]. Much of the current knowledge 
concerning the potential toxicity of NPs has been gained from in vitro or in silico test 
systems. Following ingestion, translocation of particles across the GIT can occur via 
different pathways. 
1. Endocytosis through ‘regular’ epithelial cells (NPs < 50 - 100 nm) [46]. 
2. Transcytosis via microfold (M) cell uptake at the surface of intestinal lymphoid 

tissue (NPs of 20 - 100 nm and small microparticles i.e. 100 - 500 nm) [47]. M cells are 
specialized phagocytic enterocytes that are localized in intestinal lymphatic tissue – 
Peyer’s Patches (PP). This transcytotic pathway occurs via vesicle formation at the 
apical (i.e. luminal) cell membrane that engulfs some extracellular material, which then 
moves across the cell, escaping therefore to fusion with lysosomes, fuses with the 
basolateral membrane (i.e. serosal) and releases the material at the opposite side of the 
intestinal barrier. The mechanism is size-dependent - the smaller the particle, the easier 
is the passage through the epithelium [48-50]. 
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3. Persorption, where ‘old’ enterocytes are extruded from the villus into the gut 
lumen, leaving ‘holes’ in the epithelium, which allow translocation of even large 
particles, such as starch and pollen [51-53]. 

4. Another possible route by which NPs can gain access to the gastrointestinal 
tissue is the paracellular route across tight junctions (TJs) of the epithelial cell layer. TJs 
are remarkably efficient at preventing paracellular permeation, although their integrity 
can be affected by diseases, e.g. inflammation, and/or by metabolites (e.g. glucose), 
calcium chelators (e.g. citrate) [54] and even particle endocytosis [55]. 

All above-mentioned routes could be involved in NPs translocation. There are a number of 
published reports stating the involvement of different types of endocytosis in the process of 
NPs internalization: clathrin-mediated pathway, caveolin-mediated endocytosis and 
macro‐pinocytosis for TiO2 [56], size-dependent endocytosis for Au-NPs [57]; 
endocytotic pathways were described for SiO2 [58,59] and Ag-NPs [60], etc. 
Several studies demonstrated that the phenomenon of persorption is also true for NPs, e.g. 
in the case of colloidal Au-NPs [36]. Small and large NPs gain potentially access to this 
route, nevertheless its quantitative relevance remains low, as it seems to be very inefficient 
compared to the active uptake of particles by M-cells. For instance, it was indicated that 
one lymphoid follicle dome of the rabbit Peyer patch could transport about 105 
microparticles of 460 nm diameter in 45 min [61]. 
Particulate uptake may occur not only via the M-cells of the lymphoid follicle-associated 
epithelium (FAE) in Peyer patch [49,62], but also via the “normal” intestinal enterocytes 
[46]. A number of reports on intestinal uptake of micro- and nanoparticles state that the 
uptake of inert particles occurs transcellularly through normal enterocytes and via M-cells 
[61,63-65], as well as, to a lesser extent, through paracellular pathway [66]. 
 
Potential toxicity of ENMs in the case of altered intestinal physiology 
 
It has been reported that the exposure to some NPs is associated with the occurrence of 
autoimmune diseases, such as systemic lupus erythematosus, scleroderma, and rheumatoid 
arthritis [35]. Diseases, such as diabetes, may also lead to an increased absorption of 
particles in the GIT [41]. Furthermore, inflammation may lead to the uptake and 
translocation of particles of up to 20 nm [67]. Thus, an issue to be considered in relation to 
ENMs ingestion is a possible increase in their intestinal absorption in the case of 
Inflammatory Bowel Diseases (IBD), e.g. Crohn's disease (CD), which represent chronic 
disorders characterized by recurrent and serious inflammation of the GIT [68]. CD affects 
primarily people in developed countries, where the highest incidence rates and prevalence 
for CD and ulcerative colitis (UC) have been reported from Northern Europe, the United 
Kingdom and North America [69] with a frequency of 1 in 1,000 people in the Western 
world [5]. However, reports of increasing incidence and prevalence from other areas of the 
world, e.g. Southern or Central Europe, Asia, Africa, and Latin America state the 
progressive nature and worldwide rise of these diseases [69]. 
Increased intestinal permeability has been reproducibly described in patients with CD, 
which is likely a predisposing factor to the pathogenesis and impaired epithelial resistance 
[70-73]. A barrier dysfunction has been reported in the colonic mucosa of patients with 
Irritable Bowel Syndrome (IBS), which results from increased paracellular permeability, 
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presumably by an altered expression of ZO-1 [74]. Moreover, stress is believed to 
contribute to induction of IBS and recurrence of intestinal inflammation and can increase 
the paracellular permeability [75]. It should be noted that mediators of inflammation, such 
as ROS, endotoxins (lipopolysaccharides) and cytokines are able to provoke the disruption 
of TJs and thereby increase the paracellular permeability [70]. Significant changes in 
epithelial TJs structure and function were also observed in UC [76, 77]. Thus the altered 
intestinal permeability could certainly be a result of disease progression, but there is 
evidence that it might also be the primary causative event. 
Recently, it was suggested that there could be an association between high levels of dietary 
NPs uptake and CD. Experimental results indicate that the accumulation of insoluble NPs 
in humans may be responsible for the compromised gastrointestinal functioning, as 
described in the case of CD and UC [5]. Studies have also shown that macrophages located 
in lymphoid tissue can uptake NPs, e.g. TiO2 with size of 100-200 nm from food additives, 
aluminosilicates of 100-400 nm typical of natural clay, and environmental silicates of 100-
700 nm [78]. According to another study, some insoluble NPs, such as TiO2, ZnO and 
SiO2, upon their absorption and passage across the GIT, come into contact with and adsorb 
calcium ions and lipopolysaccharides. The resulting NPs–calcium–lipopolysaccharide 
conjugates activate both peripheral blood mononuclear cells and intestinal phagocytes, 
which are usually resistant to stimulation [79]. 
Despite the insufficiency of data linking the NPs consumption to the initiation of CD and 
UC, it seems that particles of 0.1 – 1.0 μm may be adjuvant triggers for the exacerbation of 
these diseases [80]. Micro- and NPs have been constantly found in organs, e.g. in colon 
tissue and blood of patients affected by cancer, CD, and UC, while in healthy subjects NPs 
were absent [81]. Some evidence suggests that dietary NPs may exacerbate inflammation 
in CD [6]. More precisely, some members of the population may have a genetic 
predisposition where they are more affected by the intake of NPs, and therefore develop 
CD [9]. It has been also reported that micro- and NPs in colon tissues may lead to cancer 
and CD progression [81]. By contrast, a diet low in calcium and exogenous micro- and 
NPs has been shown to alleviate the symptoms of CD [5]. This analysis is still 
controversial, with some proposing that an abnormal response to dietary NPs may be the 
cause of this disease, and not an excess intake [6]. 
Although there is a clear association between particle exposure/uptake and CD, little is 
known of the exact role of the phagocytosing cells in the intestinal epithelium and 
particularly of the pathophysiological role of M cells. It has been shown that M cells are 
lost from the epithelium in the case of CD. Other studies found that endocytic capacity of 
M cells is induced under various immunological conditions, e.g. a greater uptake of 
particles of 0.1 – 10 μm has been demonstrated in the inflamed colonic mucosa of rats 
compared to non-ulcerated tissue [79, 82]. 
 
Potential health risks/benefits of nanotechnology-based food materials 
 
The absorption, distribution, metabolism and excretion (ADME) parameters are likely to 
be influenced by the aggregation, agglomeration, dispersability, size, solubility, and 
surface area, charge and physico-chemistry of NPs [83]. Amongst these parameters the 
size, chemical composition and surface treatment appear to be the most critical ones for 
 



Bulletin de la Société Royale des Sciences de Liège, Vol. 82, 2013, p. 129 - 141 

134 
 

nanotoxicity issues [84]. Chemical composition, beside the chemical nature of the NP 
itself, also includes the surface coating of the NPs [85]. Coatings can be used to stabilize 
the NPs in solution, to prevent clustering or to add functionality to the NPs, depending on 
its intended use. Surface coatings can influence the reactivity of the NPs in various media, 
including water, biological fluids and laboratory test media [86, 87]. From this point of 
view, the interaction of NPs with food components is another aspect that may need 
consideration and about which little information is currently available. The possible 
interaction of food components may alter the physicochemical properties of ENMs that in 
turn may influence their passage through the GIT and their ADME properties. 
ENMs, with their very large surface areas, may adsorb biomolecules on their surface upon 
contact with food and/or biological fluids to form a bio-molecular “corona” [88]. 
Depending on the nature of the corona, the behavior of the NPs may differ, and there could 
be the potential for novel toxicities non-characteristic neither for the non- coated NPs, nor 
for the adsorbed biological material. These bio-molecules include proteins, lipids, sugars, 
different secondary metabolites and it is those interactions that may actually determine 
how ENMs will interact with living systems. Thus, the foregoing information on the food 
should be considered carefully, taking into account its major ingredients or components, 
which have physiological properties likely to influence the absorption/translocation of 
ENMs in the GIT. 
Several studies have demonstrated that various food components provide beneficial anti-
inflammatory and anti-mutagenic effects in the GIT. Although the information regarding 
these effects on intestinal TJ barrier integrity is limited, some results are available e.g. for 
glutamine [89, 90] and fatty acids [91-93]. A growing number of data suggest the potential 
protective effect of phenolic compounds on the epithelial barrier function and their anti- 
inflammatory properties [94, 95]. In particular, certain flavonoids that represent a part of 
human daily nutrition, e.g. epigallocatechin gallate, genistein, myricetin, quercetin and 
kaempferol are reported to exhibit promotive and protective effects on intestinal TJ barrier 
[94, 96]. 
Surface-active molecules, such as terpenoids and/or reducing sugars are believed to 
stabilize the NPs in the solutions, i.e. they are could react with the silver ions (Ag+) and 
stabilize the Ag-NPs [97-98]. Flavonoids have been suggested to be responsible for the 
reduction of Ag+ to Ag-NPs [99]. Fatty acids such as stearic, palmitic and lauric acids are 
used as agents for the formation and stabilization of Ag-NPs [100]. 
 
Future perspectives 
 
Nanotechnology offers a wide range of opportunities for the development of innovative 
products and applications in agriculture, food production, processing, preservation and 
packaging. However, the present state of knowledge still contains many gaps preventing 
risk assessors from establishing the safety for many of the possible food related 
applications of nanotechnology [101]. Currently the routine assessment of ENMs in situ in 
the food or feed matrix is not possible, as well as equally impossible to determine physic- 
chemical state of ENMs, which increases the uncertainty in the exposure assessment. 
Complex matrices present in the food complicate the detection and characterization of food 
ENMs in final food/feed products, which itself contain a wide range of natural structures in 
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the nano-size scale. The information on the potential of ENMs to cross the epithelial 
barriers, such as the GIT, blood-brain, placenta and blood-milk barriers are also important 
for hazard identification. It is also clear that the evaluation of the pro-inflammatory 
potential of ENMs is another issue of current importance, as the inflammation itself is as‐  
sociated with a number of high frequency diseases, e.g. cancer, diabetes, bowel diseases, 
etc. 
From the above discussion the need for more toxicology research on manufactured ENMs 
is clear. In addition to standard tests, there is a need to develop appropriate and rapid 
screening methods to be able to control the exposure level, as well as improved models that 
will permit to assess the toxicity and allow better understanding of the mechanisms that are 
involved. Employment of developed and well characterized in vitro cell culture systems 
may be relevant for evaluation of gut and immune responses to ENMs and to adapt 
conditions to specific health conditions or to consumer groups with special needs, such as 
in the case of bowel diseases. Further studies are necessary to assess whether the 
characteristic daily intake of ENMs may exacerbate or trigger disease symptoms in 
subjects with increased susceptibility, such as inflamed state of the GIT in the case of IBD, 
CD, UC, or even be its cause. 
Another aspect deserving thorough investigation is the possible interaction of ENMs with 
food/feed components, which in turn could influence the overall behavior and effect of not 
only ENMs, but also the bioavailability of food components. 
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