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The notion of variable, or unknown, appeared in the works of the Greek mathematician

Diophantus, who lived (probably) during the third century a.d. He was particularly interested

in the following question: does a given polynomial equation with integral (or rational)

coefficients have a solution in integers (or in rational numbers)? Among the most classical

examples is the equation x2 + y2 = z2, whose integral solutions give us the lengths of the sides

of Pythagorean triangles. At that time (and, most probably, even since a few centuries before

that time), all these solutions were perfectly known.

Nowadays, we call Diophantine equation any polynomial equation with integer coefficients
and whose unknowns are supposed to be rational integers. This definition is often extended to
any type of equations involving integers and where the unknown are also integers. An
emblematic example is Fermat's equation xn + yn = zn, where x, y, z and n > 3 are unknown
positive integers. We often use the terminology “exponential Diophantine equation” when one
or more exponents are unknown.

The natural question is the following: an equation being given, determine the complete set of
its integral solutions. Sometimes, this is quite easy, in particular when one can use congruences
modulo a suitable integer. Let us for example consider the equation 3m - 2n = 1, which was solved
by Levi ben Gershon (1288-1344), answering a question of the French composer Philippe de
Vitry. Assume that there are integers m, n with n > 2 and 3m - 2n = 1. Then, 4 divides 3m - 1,
whence m must be even. Writing m = 2k we obtain (3k - 1) (3k + 1) = 2n, which implies that both
3k - 1 and 3k + 1 are powers of 2. But the only powers of 2 which differ by 2 are 2 and 4. Hence
k = 1 and we have proved that 32 - 23 = 1 is the only solution to 3m - 2n = 1 with n > 2.

However, in most of the cases, to determine the complete set of integral solutions of a
Diophantine equation remains an unsolved problem, and often it is even very difficult to
prove whether this set is finite or not. When it is infinite, the next step is to give a complete
description of all the integral solutions of the equation. For instance, the positive solutions of
the equation

5x2 - y2 = ± 4

are precisely given by the integer pairs (Fn, Ln), where (Fn)n1 and (Ln)n1 are the Fibonacci
and the Lucas sequences defined by F1 = F2 = 1, L1 = 1, L2 = 3, and satisfying Fn+2 = Fn+1 + Fn

and Ln+2 = Ln+1 + Ln, for n > 1.
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In the case of finiteness of the number of solutions, the second natural step is to try to

compute an upper bound for their absolute values (or, equivalently, for the number of their

digits), or at least to compute an upper bound for the number of the solutions. This is not

always possible. Indeed, if we manage to show that the number of digits of the largest

solution does not exceed ten times the number of digits of the smallest, this information

immediately implies the finiteness of the number of solutions, but it does not allow us to

deduce an upper bound for the number of solutions (except, of course, if we already know one

solution).

Furthermore, if we can prove that an equation has at most, say, ten solutions, nothing ensures

us that it has exactly ten solutions and while we have not found ten solutions we cannot be

sure that we have completely solved the equation. However, if we manage to prove that all the

solutions have at most, say, ten billions of digits, then, by enumerating all the possible

solutions, we can, at least in principle (!), solve completely our equation. In the latter case, we

know when we can stop our enumeration process, which is not the case when our

informations only deal with the number of solutions.

In 1970, building on earlier works by Robinson, Davis and Putnam, Yuri Matiyasevich

showed that there does not exist an algorithm which, given any polynomial Diophantine

equation with integer coefficients, can decide whether this equation has zero or at least one

integer solution. This solves Hilbert's tenth problem.

A few years before Matiyasevich's achievement, Alan Baker developed the theory of linear

forms in the logarithms of algebraic numbers and applied it to several classical families of

Diophantine equations. He gave explicit (albeit huge) upper bounds for the absolute values of

the solutions to Thue's equation

F(x,y) = b, (1)

where F(X, Y) is an homogeneous, irreducible, integral polynomial of degree at least 3, and b

is a given non-zero integer. Of course, the bounds obtained depend on F(X, Y) and b. Baker

also computed upper bounds for the absolute values of the solutions to the superelliptic

equations

f(x) = ym, (2)

where f(X) is an irreducible, integral polynomial of degree at least 2 and m > 3 is an
integer. These results show that, at least in principle, equations (1) and (2) can be
completely solved. Note that it was known long before Baker that (1) and (2) have only
finitely many solutions. These results were established by Thue in 1909 and by Siegel
in 1929, but the methods they used do not provide us with upper bounds for the
absolute values of the solutions.

Apart from this aspect, the theory of linear forms in logarithms appears to be, in
many aspects, much more powerful than the techniques developed by Thue and Siegel.
Indeed, it also applies to certain families of exponential Diophantine equations (recall
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that this terminology means that one or several exponents are unknown), like for
instance

f(x) = yq, (3)

where f(X) is a given irreducible, integral polynomial of degree at least 3 and x, y and
q > 2 are unknown integers with |y| 2. Baker's theory enables us to compute an explicit
upper bound for the size of the largest solution of (3), while Thue-Siegel's method
appears to be useless.

In my opinion, the most spectacular application of Baker's theory to Diophantine
equations was found by Tijdeman in 1976. He proved that Catalan's equation

xm - yn =1, (4)

in integers x, y, m and n at least equal to 2, has only finitely many solutions, whose size can be

explicitely bounded. Following Tijdeman's proof and using the estimates for linear forms in

logarithms available at that time, Langevin has computed that every solution (x, y, m, n) of (4)

satisfies

xm < exp exp exp exp 730.

Very roughly speaking, the situation thirty years ago was the following: we were able to

compute explicit upper bounds for many equations or classes of equations, but these were far

too huge in order to solve completely the equations considered.

Since then, numerous spectacular results have been proved, which a little while ago seemed to

be out of reach. There are three main explanations. A first one is a theoretical improvement

concerning estimates for linear forms in logarithms. A second one is the de-velopment of the

algorithmic and computational number theory, a now very active branch of mathematics. A

third one is the influence of the deep works of Wiles and Taylor and Wiles.

For instance, we have now at our disposal efficient algorithms which enable us to solve

quickly any Thue equation of small degree, say of degree less than thirteen, and with small

coefficients.

Let me end with several recent achievements.

Theorem (Wiles, Taylor and Wiles, 1995). Let n > 3 be an integer. All the integer solutions x,

y, z to

xn + yn = zn

satisfy xyz = 0.

The next result deals with an infinite family of Thue equations.

Theorem (Bennett, 2001). Let a > b  1 and n > 3 be integers. Then the Diophantine
equation

|axn - byn| = 1 (5)
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has at most one solution in positive integers x and y.

The proof of Bennett's theorem involves Baker's theory and several other methods from

Diophantine approximation. Observe that, for a = b + 1, the equation (5) has the solution

given by x = y = 1 and the theorem asserts that it has no other solution with positive x and y.

The longstanding Catalan's equation was finally completely solved in 2002.

Theorem (Mihăilescu, 2002). Catalan's equation

xm - yn = 1

has only the solution 32
* 23 in integers x, y, m, n greater than or equal to 2.

The first proof of this theorem involved at one step Baker's theory and some (not heavy)

computer calculations. However, Mihăilescu found a few years later an alternative approach 

for this part of the proof, allowing him to remove the appeal to estimates for logarithmic

forms and to computer calculations.

Recall that the Fibonacci sequence (Fn)n>1 is defined by F1 = F2 = 1 and the recursion

Fn+2 = Fn+1 + Fn for n > 1. It starts with

1,1,2,3,5,8,13,21,34,55,89,144,233, 377,610,987, ...

A positive integer n is a perfect power if it can be written as n = mq, where m and q are
integers with q > 2.

Theorem (Bugeaud, Mignotte, Siksek, 2006). The only perfect powers in the Fibonacci
sequence are 1, 8 and 144.

The proof of the above theorem combines Baker's theory with a modulai- approach based on

some of the ideas of the proof of Fermat's Last Theorem.
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