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Abstract—Nowadays increasing growth in the production of the steel products makes

automatic identification of effective parameters in determining the quality of the output

product is very important. In this regard, level II automation plays an important role. In this

study, a novel method has been proposed to identify effective parameters in determining the

purity of sponge iron in the process of Iron Direct Reduction. In the proposed method,

differential evolution (DE) optimization algorithm with the binary approach has been used in

order to identify the subset of effective parameters with the lowest estimation error in

determining the purity of sponge iron. The binary differential evolution algorithm is combined

to the Least Squares- Support Vector Machine (LS-SVM) regression method to candidate a

subset of the effective parameters. Implementation of the proposed algorithm on data obtained

from the practical project (Bardsir steel complex) confirms the effectiveness of the proposed

method so that by choosing the effective parameters, the ability to estimate the sponge iron

purity with 98.8% accuracy (1.2% estimation error) has been attained.

Keyword—Differential evolution optimization algorithm, feature selection, binary approach,

direct reduced iron, LS-SVM regression.

1. Introduction

There are two conventional methods for the crude steel production in the industrial plants:

- Crude iron production in the Blast Furnaces (BF) and then steel production in the

oxygen converters.

- Direct reduction of iron ore (pellet) and melting sponge iron and scrap iron in electric

furnaces.
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The crude steel production using the blast furnaces (indirect reduction) is an old method that

has some significant disadvantages.

- The setting up costs in the specified capacity for the BF units is higher than the DR

units.

- The BF method has more environmental restrictions than the DR method.

- Blast furnace at high capacities is economically feasible while the direct reduction

method can be used in small units with good economic justification.

- Sponge iron is easy to transport while carrying agglomerates (blast furnace feed) are

more difficult.

Considering implied shortcomings, spongy iron in the making iron industry is an acceptable

alternative for the scrap iron. The spongy iron that is produced in the direct reduction process,

in comparison with the scrap iron, has a proper karat. The Direct Reduced Iron (DRI) can be

produced in the gas-based or coal-based technologies. In this regard, gas-based methods are

preferred for the regions with the vast gas resources. One of the most conventional solutions is

the midrex method. Since a large number of parameters effect on the sponge iron production

process, so the automatic and optimal identification of subset of the parameters affecting the

purity of sponge iron, is considered important in the steel industry. Therefore, identify the

most effective subset of the available parameters is required in order to reduce the overall cost

of the production and adjust the parameters quickly and automatically.

In this paper, a novel optimal feature selection method is proposed that the effective

parameters can be elected based on binary DE optimization algorithm. The proposed

methodology is applied to find the optimal subset of parameters (features) that is lead to the

highest metallization degree. The selected parameters accurately estimate the system output

with no needs to the excess variables.

The rest of the paper is organized as follows.

Section 2 explains the proposed algorithm and its preliminaries, briefly. Computerized

simulations using the practical data are presented in section 3. Finally, our conclusions are

presented in the section 4.
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2. Proposed Algorithms

Block diagram of the proposed algorithm to select the optimal subset of parameters to

determine the purity of sponge iron is shown in Fig. 1. If the initial population of the

introduced optimization algorithm can be expressed in the form of a matrix, then each row of

the matrix represents a member (answer). Each element of the selected member in the

population consists of binary value "0" or "1", which represents the "existence" or "absence"

of the parameter in the member. In this paper, by applying the proposed algorithm on the DRI

data in several times all samples attend in the testing phase at least once. This means that

random conditions of the plant will be reduced and the robustness of the algorithm will be

improved.
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Fig. 1: Block diagram of the proposed algorithm.

In this study, the LS-SVM regression has been used to estimate the purity of the output

production. Using the proposed binary differential evolution optimization algorithm in this

study, the subset of effective parameters in determining the purity of sponge iron has been

identified with high accuracy. The only limitation of the differential evolution optimization

algorithm is the number of initial population that should be selected between 3 to 10 times the

number of parameters (control variables). By applying the differential evolution optimization
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algorithm on the DRI data, all the solutions have been saved in the repository matrix. In this

case, selection of the optimum solution will be provided. In order to explain the steps of the

proposed algorithm, each of the components are described separately as follows.

2.1. LS-SVM Regression

Support vector machine is an intelligent machine that is learned based on the statistical

fundamentals. The machine supervised learning procedure is implemented using input-output

system data. Support vector machine uses supervised learning method [1-4]. At first the

support vector machine was invented to classify data into two classes but gradually this tool

was used for multi-class classification and regression. Support vector machine idea is firstly

introduced to solve the linear classification problems but the kernel functions transfer the

main problem solution space from a low finite- dimensional linear space to a higher order

nonlinear space. This mapping technique, known as the kernel trick, modifies the hyper planes

for the nonlinear problems. Namely, this methodology is extended for the nonlinear

classification applications.

In the Support Vector Machine Regression (SVR) problem, a nonlinear function is estimated

from the system input-output signals that keep the property of the maximum confidence

margin. One of the most leading versions of SVR that has a significant capability in the

modeling problems is the Least Squared- Support Vector Machine (LS-SVM) [5-7]. In this

regard, the regression model is determined as follows.

(1)

where determines the system input-output signals. represents the

nonlinear mapping function. and are the model parameters that are calculated from the

minimization of the following function.

(2)

where is the regularization parameter that establish a tradeoff between the output error

minimization and the model complexity factors. is considered for the experimental error.

As a result, the optimization problem of the LS-SVM regression can be determined as

follows.
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(3)

(4)

The Lagrange function is derived from Equation (3) and (4) as follows.

(5)

where and are the Lagrange coefficients and the learning errors, respectively. Based

on the Karush-Kuhn-Tucker (KKT) conditions, the first-order partial differentiate of the

Lagrange function can be represented as follows.

(6)

which the above system of equations can be solved as:

(7)

(8)

and can be simplified into the following least squares problem.

(9)

Namely, the LS-SVM regression model is written as:
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(10)

where is the kernel function and should be satisfied in the Mercer’s

Theorem. The most convenient kernel functions applied in the modeling problems are the

linear functions, polynomial functions and Radial Basis Functions (RBF).

2.2. Binary Differential Evolution Optimization Algorithm

Differential evolution algorithm is one of the most powerful optimization algorithms which is

based on the non-human fertility. The member that is combined with the mother (current

member) to produce the next generation is the mutated member that can be achieved by

combining several members of the previous population [8-9]. In the differential evolution

algorithm, the produced member remains only if that quality is better than mother (previous

generation). Otherwise, the newly produced member gets destroyed. In the differential

evolution algorithm, all members of the current population play the role of mother and father

(mutated member) is formed by combination of the mothers. It should be noted that the

mutated member (father) for every member of the population (for each mother) is different. In

this paper, in order to produce the mutated member for each member of the current population

( ), the following equation is proposed.

(11)

Which and are the mutation factors and usually are in the range of .

 ، and are randomly selected from the current population which should satisfy the

following equation . are the best global and local

solutions, respectively.

If is the position of the i-th member in the iteration t with n

variables and is the generated mutated member for the

member , then the generated member (born fetus) is produced according to the following

equations.

(12)
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(13)

 is the combination constant, which is usually in the range 0.2≤  ≤0.9. In the above 

equations, it is clear that the generated member in the differential evolution algorithm should

never be exactly the same as his mother.

By calculating the fitness function for the generated member and compare it with the fitness

function related to the mother, the best member will remain and the worst member will be

removed. This process is done for all members of the current population (first iteration). By

examining the convergence condition, the above process is repeated until the optimal solution

is obtained.

In order to use the binary DE algorithm in this paper, the following equations are introduced

to determine the binary value of the elements of the generated .

(14)

If the result of this relationship is more than a random value ( ), the value of "1" is

replaced with and otherwise the value of "0" is replaced.

3. Implementation Results

3.1. Database

The suggested methodology has been implemented on the Bardsir steel complex database.

This database is a set of 176 selected data sample that each one comprised of 40 controllable

parameters. Each data sample is gathered from the data record of 23 temperature variables, 8

gas flow meters, 8 gas analyzers and one weight transmitter.

3.2. Validation Parameters

In this paper, the proposed algorithm has been validated using the Inverse Mean Square Error

(IMSE) criterion. IMSE criterion is defined as follows.

(15)
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where and are the real system output and the estimated output, respectively. In

other words, the maximum value of the criterion defined in (15) is sought. As a result, the

proposed algorithm has been utilized to reach an effective subset of the parameters.

3.3. Case Study

Considering the limitations of the differential evolution algorithm, the initial population size is

selected as 120 members. The proposed algorithm is repeated 10 times, iteratively.

All of the operators in equation (11) are considered as binary operators. It is implied that

selected or not-selected parameters in the proposed binary optimization algorithm is

represented as “1” or “0”. The proposed algorithm is implemented on the DRI database (Fig.

2). As it is shown, the proposed algorithm is able to achieve 98.8% estimation accuracy (1.2%

estimation error).

The most important effective parameters in determining the purity of sponge iron can be

mentioned as follows.

- The flow of natural gas parameter

- The flow of process gas parameter

- The output Co2 gas analyzer parameter
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Fig. 2: DRI data analysis using the proposed algorithm.
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4. Conclusion

In this paper, an efficient algorithm based on binary optimization was proposed to select a

subset of the parameters with the greatest influence in determining the purity of sponge iron.

For this purpose, for the first time in this research by applying the differential evolution

optimization algorithm in binary form, the effective subset of the parameters in determining

the purity of sponge iron was determined. By applying the proposed algorithm on the DRI

data in several times, random conditions of the plant was reduced and the robustness of the

algorithm was improved.
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