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Abstract

Measurement of compressive strength and workability of concrete as the most important

mechanical properties of concrete have always been a significant topic to designers. Considering

a large number of parameters influencing the mixed design of concrete and the reduction in the

number of test samples, today various inferential algorithms are used for discovering

relationships, predicting mechanical properties, and identifying nonlinear patterns along with

optimizing concrete mixtures. Among these algorithms, artificial neural networks are highly

effective and reliable alternative for complicated systems with uncertain structure in which the

aim is to obtain different kinds of relationship between the input and output variables with high

orders. The methodology used in this study is based on MLP and GMDH artificial neural

networks, which lack theoretical basis and are known as inverse engineering (IE) or black box

models. To present a model for prediction of these parameters, two artificial neural network

approaches were investigated and the performance of GMDH model, when comparing the

laboratory results with the predicted values, suggests acceptable accuracy of this model in

evaluation of compressive strength and slump.

Keywords: concrete compressive strength, workability, Artificial Neural Network (ANN),
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1. Introduction

Compressive strength and workability of concrete are the most important mechanical properties

of concrete which are considered as the main criteria in determining the properties of desirable

structural grade concrete. Compressive strength refers to the level of uniaxial compressive stress

when the element becomes fully dissociated and other concrete properties such as elastic

modulus and water tightness appear to have direct relationships with the compressive strength.

Hence, the compressive strength is commonly used as the main criterion in defining the required

quality of concrete, and an accurate estimation of the strength before the placement is a practical

need of construction engineers.
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On the other hand, the workability, which according to ACI definition refers to the ease with

which concrete can be mixed, placed, consolidated and finished. A mix that is difficult to place

and consolidate will increase the cost of handling, and lead to poor strength, durability and

appearance. This property of concrete is generally known to affect the consistency, flow ability,

pump ability, compatibility, and harshness of a concrete mix. Thus, concrete workability is a

very crucial factor that must be considered in order to produce high quality concrete.

Due to the importance of the research topic, various studies have been conducted in this regard

and different traditional statistical models and machine learning methods have been presented so

far. Linear and nonlinear multiple regression are the most common approaches for estimating the

behavior of concrete. However, in recent years the use of computer-aided modeling for

predicting the mechanical properties of construction materials is growing. Since the relationship

between components and concrete properties is highly non-linear, mathematically modeling the

compressive strength of concrete based on available data is difficult. Several methods have been

employed using artificial intelligence (AI) to estimate these properties and solve the problem of

interest. Among these methods artificial neural networks (ANN) is one of the most powerful

tools for modeling complex processes and can capture complex interactions among input and

output variables in a system without any prior knowledge about the nature of these interactions.

The concept of ANN, which is, in essence, an attempt to imitate the human brain’s learning

capabilities, was first presented by McCulloch and Pitts [1] in 1943 by investigating networks of

interconnected neurons, with each neuron treated as a simple binary logic computing element. As

the basic concepts propounded in the issues related to it enjoyed a solid mathematical basis, over

the last decades there has been an increasing interest in using machine learning methods

combined with neural network techniques to create autonomous systems that can be used to

make prediction for a specific application, such as pattern recognition or data classification.

Artificial neural networks owe their development to the attempts of Haykin [2] in the past two

decades. Welstead [3] used back-propagation algorithm (BP), which utilizes the gradient-descent

method to minimize the error function and represent complicated associations between patterns.

Kasperkiewicz et al [4] employed fuzzy-based neural networks method (fuzzy-ARTMAP) to

estimate the compressive strength of HPC concrete, and obtained the optimal mixed design. Yeh

[5] used modified ANN model and established a new approach. By presenting "Response Trace

Plots", he also estimated the slump of concrete containing slag and fly ash (FSC). Bai [6]

managed to estimate the workability of concrete with metakaolin and fly ash, using the three

parameters of slump, compacting factor, and Vebe time. Later other researchers including Oztas

et al [7], Yeh [8, 9], Chine et al [10], and Bilgil [11] presented some models for prediction of

concrete workability using artificial neural network and regression analysis. Regarding the

obtained data their suggested ANN models were more precise and accurate in comparison with

other existing regression approaches. Ramezinianpour et al [12] used multilayer perceptron

neural networks (MLP) based on the back-propagation paradigm (BP) and presented a network

with two internal hidden layers to estimate the strength properties of concrete with the rice husk

ash, metakaolin, silica fume, and limestone powder.
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Based on previous studies, AI-based methods, that lack theoretical basis and are known as

inverse engineering or black box models, have proven to be more superior than the previous

conventional statistical modeling [13-16]. The method used in this study is based on two neural

network approaches: multilayer perceptron (MLP) and group method of data handling (GMDH).

In this study, we aimed to assess and compare the prediction accuracy of these two methods in

modeling concrete slump flow and compressive strength of concrete incorporating slag, fly ash,

and super plasticizer.

2. Materials and methods

The basic structure of artificial neural networks (ANN) is simulation of the complex function of

brain cells with a large number of interconnected units working in parallel. ANN consists of

multiple layers of simple processing elements called as neurons or nodes. Based on the direction

of information propagation in networks, ANNs can be classified into two major types,

feedforward and recurrent networks. In feedforward networks, the information moves in one

direction only from the input nodes to the output nodes through network connections. Unlike

feedforward networks, the connection between the units in recurrent networks form a cycle.

Fig.1 represents application of feed forward networks for modeling processes. Patterns are

presented to the network via the input layer, which communicates to one or more hidden layers

where the actual processing is done via a system of weighted connections.

Many kinds of neural networks have been explained and demonstrated based on learning

algorithm. One of the most commonly used feedforward ANNs in function approximation is

Multilayer perceptron (MLP) due to their simplicity in implementation and quite satisfying

results they give.

Group Method of Data Handling (GMDH) is another neural network modeling algorithm which

is known also as Polynomial Neural Networks. The GMDH algorithm is based on an inductive

self-organizing approach to the estimation of black box models with unknown relationships

between variables (Vissikirsky and Stepashko, 2005).

Fig. 1: Feed-forward neural network
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2.1. MLP neural network

The multilayer perceptrons (MLP) is a central model of neural network, which frequently used to

extract patterns and detect trends of a great variety of real-world problems. To overcome the

limitation of single perceptron feed forward neural networks, MLP networks have been

introduced. However, too many hidden layers can degrade the network performance. The basic

concept of a single perceptron was introduced by Rosenblatt in 1958. Such a network consists of

several perceptron layers, where the outputs of the perceptrons of each layer are connected to the

inputs of the perceptrons of the next layer. The net input signal is then subjected to an activation

function g to produce an output signal y. Two of the most used activation functions are the

sigmoid function, g (u) = tanh (u), and the linear function, g (u) = u.

The fundamental principle of training process of the MLP is known as the error-backpropagation

algorithm, consisting of two phases: feedforward and error-backpropagation. Usually a gradient

descent algorithm is used to adapt the weights based on a comparison between the desired and

actual network response to a given input stimulus.

In the feed-forward phase, one sample with one or more inputs, depending on the topology of the

network, is introduced in the input layer and the outputs of the network are calculated by

forwarding the outputs of the neurons on each layer as inputs to the neurons on the following

layer, down to the output layer. The error BP phase is performed by first calculating the square

error between the desired output and actual output of

neurons , as given by Eq (1):

If total number of algorithms used in training process of network is Q and the output layer has P

neurons, the error function that is minimized, can be expressed on the form Eq (2):
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Starting from the output layer and going backward in the direction of the first layer, the weights

are adapted by delta rule, presented in Eq (3).
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Where a constant coefficient is determines the learning rate, and
kj∇ is learning gradient of

error related to the connection between neuron j in hidden layer and neuron k.
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2.2. GMDH neural network

Group Method of Data Handling (GMDH) algorithm is a combination of mathematical modeling

approaches and black box nonlinear system identification concept, which was first proposed by

Ivakhnenko in 1976. He made the neuron a more complex unit featuring a polynomial transfer

function. The interconnections between layers of neurons were simplified, and an automatic

algorithm for structure design and weight adjustment was developed.

This method can be assumed as a specific type of supervised Artificial Neural Networks (ANN)

which uses the idea of Natural selection to control the size, complexity and accuracy of network.

The main application of GMDH is modeling of complex systems, function approximation,

nonliniear regression, and pattern recognition. [17]

The volterra- Kolmogorov-Gabor (VKG) polynomial function is used as the transfer function to

create the initial model. The Kolmogorov-Gabor polynomial function is expressed by:

0
1 1 1 1 1 1

...
m m m m m m

i i ij i j ijk i j k
i i j i j k

y a a x a x x a x x x
= = = = = =

= + + + +∑ ∑∑ ∑∑∑ (4)

Where, is the vector of input variables, is output variables and

is the vector of the coefficients or weights in each neuron, and represent

the bias component in this algorithm. At the first layer of network, an algorithm, using all

possible combinations by two from inputs variables, generates the first population of Partial

Descriptions (PD). Total number of neurons created on the first layer is defined by the

combination of the two input variables . Layers are grown based on error criteria at each

level. Performance is evaluated at each level of the generation of the layers. Next layer starts

with maximum possible number of neurons, and determining weights, and then frozen. [18,19]

This is different from the BP technique where all of the layers may participate simultaneously in

the training process. The training of GMDH network in the sth iteration to form second order

polynomials is formulated as follows:

( )( , )sy h w X= , 1 , ... ,s m= (5)

Where, is the vector of coefficients in each neuron, represents the vector of the network

input parameters, and denotes the number of iterations of the network training process. The

sample dataset can be divided to two subsets, the training dataset and the testing data set.

In this approach, one parameter called “Selection Pressure” must be set as proper threshold to

determine the number of neurons in each layer. After calculating the coefficients for all the

neurons, those which produce the poorest results according to a previously chosen selection

criterion must be removed from the layer. Threshold is set to root mean square error (RMSE).

Selection values can vary between zero (no pressure) and one (the maximum

pressure of selection). All of the neurons have had a similar structure, where using the external
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criterion, the best neurons are classified and proceed to the next stage. The use of critical

threshold can have an impact on the accuracy of the resulting values.

(6)

It should be noted that only one neuron is selected in the last layer.

In this study, the forecasting ability of two neural networks is assessed using correlation factor

(R), Mean Square Error (MSE) and Root Mean Square Error (RMSE).
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Where, represent the target values and the output values of the network, respectively

while denote their mean value in samples.

The architecture of MLP and GMDH networks has been compared schematically in Fig. 2. As

can be observed, the mostly used style applies two-combinations of connections. Despite the

resemblance to MLP, the structure in the GMDH network is not fully connected.

Fig. 2: The schematic architecture of MLP and GMDH neural networks
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3. Numerical Simulations

In this part, two simulations based on MLP and GMDH Neural networks are performed in order

to predict the compressive strength (Fc) and slump (S) of 25 concrete mixtures. Experimental

results of Yeh [8] have been used.

The network's input parameters influencing determination of these two factors can be stated by

the following function:

(10)

Where, the eight inputs of the network are the values of Cement (C), fly ash (FA), Slag (Sl),

Water (w), Superplasticizer (SP), Coarse aggregate (G), Fine aggregate (F), and the water.binder

ratio(w.b). Materials used in the experiments consisted of type I portland cement, coarse

aggregate with a maximum size of 12.5 mm, fine aggregate with a fineness of 2.95, G-type

superplasticizer, and cementitious materials of class F fly ash. The SP admixture was HICON

HPC 100, conforming to ASTM C-494-Type-G (density: 1.1 kg/l). Specific gravity of each

component have been provided in Table 1.

Table 1: The range of changes and the specific weight of the components of the plan

At least three cylindrical specimens were prepared from 25 concrete mixes of various

proportions of ingredients and tested for compressive strength 28 days. One slump test was also

performed for each mix. Measurements from the laboratory are shown in table 2.

The range of components (Kg/m3)

Component Minimum Maximum Specific gravity

Cement 140 350 15.3
Fly ash 0 200 22.2

Slag 0 240 85.2
Water 150 250 00.1

SP 3 15 20.1
Coarse aggregate 780 1050 54.2

Fine aggregate 640 900 66.2

)/,,,,,,,(),( bwFGSPwSlFACfFcS =
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Table 2: The details of the mix designs

The laboratory results covered five different levels of the required average compressive

strengths, about 25, 32.5, 40, 47.5, and 55 MPa, and five different levels of workability, about 5,

10, 15, 20, and 25 cm in slump. Therefore, there were 5 5 = 25 concrete mixtures.

4. Results and discussions

Determination optimum structure of network with proper number of neurons and hidden layers,

is one of the most important tasks in MLP networks. The training process is used to determine

proper interconnection weights, and desirable results. If an inadequate number of neurons are

used, the network will be unable to model complex data, and the resulting fit will be poor. In

contrast, using too many neurons in the hidden layers might cause an overfitting or overtraining

problem which leads to poor generalization ability on testing dataset.

Component Content (kg/m3)

Mix
No.

Cement
(C)

Fly ash
(FA)

Slag
(Sl)

Water
(w)

Super-
plasticizer

(SP)

Coarse
aggregate

(G)

Fine
aggregate

(F)

Water
binder
ratio
(w/b)

(Cm)
Slump

(S)

(MPa)
Compressive

strength
(Fc)

1 147.8 2.11 178 231.3 4.4 1007.8 675.3 0.699 5 25

2 150.2 24.1 172.8 234.9 4.5 993.1 668.2 0.69 10 25

3 151 55.3 185.3 235.1 5.1 957.9 653.7 0.613 15 25

4 150.3 74.8 194 234.9 5.5 842 743.6 0.574 20 25

5 150 110.5 207.1 233.6 6.1 874.1 657.5 0.513 25 25

6 159.3 4.1 238.4 236.4 5.2 952.4 663.5 0.606 5 32.5

7 159.3 1 238.3 236.5 5.2 968.7 646.9 0.606 10 32.5

8 158.3 17.3 238.9 236.4 5.4 835.7 766.6 0.583 15 32.5

9 160.1 52.8 240 235.1 5.9 914.9 640.9 0.532 20 32.5

10 168.3 82.2 238.3 234.6 6.4 812.3 708.2 0.493 25 32.5

11 140 82 223.4 168.6 5.8 844.7 889.1 0.391 5 40

12 140.6 66.6 239.7 171.8 5.8 832.7 896 0.398 10 40

13 162.4 64.4 239.1 180.2 6.1 812.6 879 0.4 15 40

14 184.2 66.2 239.7 190.1 6.4 789.4 854.8 0.401 20 40

15 214 66.1 239.9 234.5 6.8 842 655.5 0.464 25 40

16 156.4 77.6 239.7 168.6 6.2 823.4 886.9 0.369 5 47.5

17 173.9 49.2 239.2 170.8 6 837.6 886.2 0.382 10 47.5

18 194.8 48.8 239.6 179.8 6.3 814.7 868 0.385 15 47.5

19 228.3 57.2 239.4 192.1 6.8 782.4 829.8 0.379 20 47.5

20 293.3 36.7 239.4 203.2 7.4 882.4 664.1 0.37 25 47.5

21 216.3 62.3 239.7 169.1 6.7 806.5 869.8 0.339 5 55

22 243.5 32.8 239.5 173 6.7 808.2 870 0.348 10 55

23 287.5 21.2 239.9 182 7.2 806.2 823.7 0.345 15 55

24 329.6 14.5 239.9 186.4 11.5 810.1 770.8 0.339 20 55

25 352.3 0 230.9 190 13 806 768.7 0.348 25 55
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In this program, the MLP is feed forward fully connected network, with two hidden layers along

with levenberg-Marquadt training algorithm. Two most commonly nonlinear and linear transfer

functions, and , have been used in first and second hidden layers, respectively.

It can approximate any function with a finite number of discontinuities arbitrarily well, given

sufficient neurons in the hidden layer. After a number of trial, the architecture of the MLP

network for prediction the slump and compressive strength of samples, was determined and

parameters minimizing the RMSE of each subset were described in the table (3) and table (4),

respectively. The results of all the data have also depicted in the figure below.

Table 3: The results of neural network (MLP) associated with slump data

Fig. 3: The results of neural network (MLP) for all of the slump data

Input Data (Slump)

Training
Data

Validation
Data

Testing
Data

Number of
neurons in the

first hidden
Layer

Number of
neurons in the
second hidden

Layer

Contribution (%) % 66 %23 % 11

MSE 1.74 11.35 14.44 6 4
RMSE 1.32 3.37 3.80

R 0.99 0.90 0.89
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Table 4: The results of neural network (MLP) related to the compressive strength data

Fig. 4: The results of neural network (MLP) for all of the compressive strength data

The values of standard deviation (σ) and root mean square error (RMSE) are almost equal if the 

mean (µ) shifts toward zero, neglecting the value of 1 for the bias.

2

1

1
( )

1

N

i
i

e e
N

σ
=

= −
−
∑ (11)

2

1

1 N

i
i

RMSE e
N =

= ∑ (12)

The results in GMDH by selecting the threshold criterion α based on Root Mean Square Error 

(RMSE) were obtained as follows:

Input Data (Compressive Strength)

Training
Data

Validation
Data

Testing
Data

Number of
neurons in the

first hidden
Layer

Number of
neurons in the
second hidden

Layer

Contribution (%) % 66 %23 % 11

MSE 2.01 5.24 3.84 7 4
RMSE 1.42 2.29 1.96

R 0.95 0.87 0.92
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Table 5: The results of GMDH neural network associated with the slump data

Fig. 5: The results of neural network (GMDH) for all of the slump data

Input data (slump)

Training data Test data

Selection
pressure (α) 

Max Layer-
Neurons

Max
Layers

Contribution (%) % 70 % 30

MSE 3.68 5.52 0.6 50 4

RMSE 1.92 2.35
R 0.98 0.88
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Table 6: The results of neural network (GMDH) associated with the compressive strength data

Fig. 6: The results of neural network (GMDH) for all of the compressive strength data

5. Conclusion

The results of modeling for all of the data have been presented in four diagrams for each method

(Figs. 3-6), where diagram (a) demonstrates the target values and the values obtained from

network for 25 plotted mix designs. Furthermore, Diagram (b) indicates these values with

Input data (Compressive strength)

Training data Test data

Selection
pressure (α) 

Max Layer-
Neurons

Max
Layers

Contribution (%) % 75 % 25

MSE 1.98 2.75 0.6 30 5

RMSE 1.41 1.66
R 0.96 0.91
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correlation factor (R). Diagram (c) manifests the values of error for the 25 mixed designs

together with mean square error (MSE) and root mean square error (RMSE) across all of the

available data. Finally, diagram (d) reveals the distribution of this error along with the values of

standard deviation and mean. The results of conducted calculations suggest the ability of

artificial neural networks in the prediction and modeling of nonlinear systems, with the only

difference being the fact that the group method of data handling (GMDH) algorithm has been

more successful than multilayer perceptron (MLP) neural network in estimating the experimental

values of compressive strength and slump. In addition, the RMSE has been lower in GMDH

approach for all of the data (1.07 in comparison with 3.07 and 0.64 in comparison with 2.28 for

slump values and compressive strength values, respectively).

The experimental results imply the acceptable accuracy of proposed GMDH algorithm. The

notable point in this method is the self-organizing characteristic of the network and its high

flexibility, making it a powerful instrument for prediction of a variety of nonlinear complex

systems. The proposed methodology provides a guideline to model material characteristics using

only a limited amount of experimental data. Using this new approach, it is expected that an

optimized and efficient algorithm can be estimated for predicting the mechanical properties of

concrete containing slag, fly ash, and SP and better results are obtained in comparison with other

conventional methods.
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