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Abstract: Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their

bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs)

to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are

accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually

very bright and shows enhanced star formation. In this paper we summarise the current sample of DAGN from

previous studies and describe methods that can be used to identify strong DAGN candidates from optical and

spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission

lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high

resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical

emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates

(SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for

DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself

and not related to the presence of two AGN in the system.

1 Introduction

Galaxy mergers are the most powerful drivers of galaxy evolution in our low redshift Universe. During

these mergers the nuclear supermassive black holes (SMBHs) of the individual galaxies sink into the

center of the merger remnant (Begelman, Blandford & Rees 1980). When the SMBH pair members

are at separations of < 10 kpc, they are referred to as dual SMBHs and when they are at separations

< 100 pc, they are called binary SMBHs (Burke-Spolaor et al. 2014). If both the SMBHs are accreting

mass they can form active galactic nuclei (AGN) pairs. Depending upon their AGN separations they

are called dual or binary AGN and can be detected at optical (Liu et al. 2010), radio (e.g. Rodriguez et

al. 2006) and X-ray wavelengths (e.g. Koss et al. 2012; Comerford et al. 2013). Radio jets may arise

from one or both AGN (Rees et al. 1982). The SMBHs will eventually become gravitationally bound
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at separations of a few parsecs and may be enveloped by a common circumbinary disk (Hayasaki,

Mineshige & Ho 2008). They will finally coalesce releasing enormous amounts of gravitational

radiation (Abbott et al. 2016).

From simulations it is well understood that dual nuclei play an important role in driving gas

towards the centers of merger remnants and triggering star formation (Mayer et el. 2007) leading to

the merger of the SMBHs (Kelley et al. 2017). This is clearly seen in observations of gas rich mergers

such as ultraluminous Infrared Galaxies (ULIRGs) where the merging is accompanied by enormous

amounts of star formation (Sanders et al. 1988). The dense gas collects not only around the individual

nuclei but also between the nuclei, resulting in a velocity gradient in the molecular gas distribution;

such a morphology is expected from gas dynamics. However, if the nuclei are accreting (i.e. are

AGN) or associated with intense star formation, the AGN/starburst activity will also be accompanied

by galactic scale outflows of hot, ionized gas that can drive out the cold molecular gas from the

nucleus and quench star formation (Dasyra et al. 2014; Garcia-Burillo et al. 2015). This negative

feedback of AGN or starburst activity can help regulate the growth of the galaxy bulge as well as

the SMBHs (e.g Silk & Rees 1998). Thus in merging, luminous starburst galaxies, there are two

competing mechanisms - the two cores driving the gas inwards and the outflows driving the nuclear

gas outwards (Sakamoto et al. 2014).

In this paper we mainly focus on two aspects of dual AGN (DAGN) in merger remnants - their

detection and the star formation associated with the DAGN. In the following section we describe the

observational methods of detecting DAGN and the current confirmed DAGN sample. We then discuss

radio observations of two double peaked emission line nuclei, KISSR 1494 and 2MASX J1203. In

the remaining two sections we estimate the effect of AGN pairs on star formation in gas rich merger

remnants and then summarise our results.

2 DAGN in Galaxies : their detection and the current known

sample

There are several methods by which DAGN can be detected in galaxies and we have discussed this

in Rubinur et al. (2017) but we briefly describe it here as well. The earliest DAGN were discovered

by chance through the optical variability studies of quasars. The most famous example is the quasar

OJ 287 whose optical AGN variability has been tracked for several decades now (Sillanpaa et al.

1988; Lehto & Valtonen 1996). The variability arises due to the time dependent variation of the

SMBH separation. This will affect the mass accretion rate of the individaul AGN and hence produce

a periodicity in the emisison from the DAGN, as has been shown in various models (e.g. Valtonen et

al. 2008). There are now several programs that track optical variability of quasars and this may lead

to new discoveries.

Another indirect method that has led to DAGN detections is the observation of S or X-shaped

radio jets in the centers of radio bright galaxies (Begelman, Blandford & Rees 1980). The S-shaped

radio jet morphologies are thought to arise if there is a companion black hole orbiting an AGN. The

periodic pertubations caused by the companion can cause the accretion disk to precess and result in

precessing radio jets that will appear as S-shaped radio jets (Rubinur et al. 2017). The X-shaped

radio sources, however, may arise due to the spin flip of one of the SMBHs in the DAGN, a very

good example is NGC 326 (Murgia et al. 2001; Hodges-Kluck & Reynolds 2012). There are other

explanations for S or X-shaped radio jets such warping of the accretion disks (Pringle 1997) or back

flowing gas (Leahy & Williams 1984).

In the past two decades after the advent of large spectroscopic surveys, double peaked emission

lines have been detected in the optical spectra of AGN and the galaxies are called double peaked
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AGN (DPAGN; Zhou et al. 2004). The Doppler shift between the two line components can be due to

several reasons apart from two AGN : rotating nuclear disks , AGN outflows or collimated jets (Kharb

et al. 2015 and references therein). For example, Fig. 1 shows the double peaked emission lines in

[OIII]. Thus to confirm the presence of two AGN in a DPAGN high resolution radio observations

(e.g. Tingay & Wayth 2011; Kharb et al. 2015; Rubinur et al. 2017) or X-ray observations are

essential (e.g. Liu et al. 2013; Comerford et al. 2015). To date, about 30% of all confirmed DAGN

are from DPAGN samples (McGurk et al. 2015) and hence this may be a good technique, though

high resolution imaging is essential. On top of the double peaked lines, a further discriminator could

be choosing DPAGN nuclei that have high stellar velocity dispersion (σ) (Rubinur et al. 2017, in

preparation). This is because a pair of SMBHs in the nuclear region will dynamically heat the stars

(Merritt & Milosavljevic 2005).

There are several reasons why detecting two AGN in the centers of galaxies is important. In

the light of recent detection of gravitatational radiation, it is important to determine a sample of

closely interacting SMBHs whose gravitational radiation can be detected using pular timing arrays

or µHz detectors such as eLISA. Such SBMH pairs can be detected only through their emission

in the electromagnetic spectrum which occurs when they are accreting as AGN. Apart from their

interaction, dual or binary AGN will drive the cold gas into the centers of galaxies resulting in nuclear

star formation, strong winds, outflows and AGN feedback. Thus dual AGN also play an important

role in galaxy evolution, especially in gas rich merger remnants.

3 Radio Observations of the DPAGN galaxies KISSR 1494 and

2MASX J1203

3.1 KISSR 1494

This galaxy hosts a Seyfert 2 nucleus which shows double peaked emission lines in its Sloan Digital

Sky Survey (SDSS) spectrum (for details and the spectrum of KISSR 1494 see Kharb et al. 2015). The

Hα and Hβ lines in KISSR 1494 have equal peaks; such DPAGN are often referred to as an EPAGN.

The equal peaks could be due to a nuclear disk or two AGN (Smith et al. 2012). We conducted high

resolution, Very Long Baseline Interferometry (VLBI) radio observations of KISSR 1494 using the

Very Long Baseline Array (VLBA) at the dual frequencies of 1.6 GHz and 5 GHz in August, 2013.

We detected a single radio component at 1.6 GHz but nothing at 5 GHz, which suggests that the

radio emission has a steep spectral index (S
ν
∼ να) and α < − 1.5. The radio emission detected

at 1.6 GHz has a size of 7.5×5 milliarcseconds or 8×6 pc at a galactic distance of 250 Mpc. The

emission has an integrated flux of 650 µJy. Although it is possible that there are two SMBHs in the

nucleus of KISS 1494 and only one has been detected in our observations, a more likely interpretation

of the radio emission is that it represents a coronal wind arising from the magnetized corona above

the accretion disk or from the inner edge of the accretion disk or torus of the AGN.

3.2 2MASX J1203

2MASX J1203 (or 2MASX J12032061+1319316) also hosts a Seyfert 2 nucleus and shows double

peaked emission lines in its SDSS spectrum (Fig. 1) (for details see Rubinur et al. 2017), the only

difference being that the peaks are not equal in this AGN. We carried out high resolution, radio

observation of 2MASX J1203 using the Karl G. Jansky Very Large Array (EVLA) at 6 and 15 GHz

in July, 2015 and May, 2016 respectively. We also used VLA archival data at 8.5 and 11.5 GHz, from

March, 2014 observations. We found that the radio emission has a prominent S-shaped morphology
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Table 1: The table shows the sample of confirmed DAGN that have been collected from the literature

along with the reference.

No Galaxy Name RA Declination Redshift Reference

1 LBQS 0103-2753 01h05m34.7s –27d36m59s 0.85 Junkkarinen et al. (2001)

2 NGC 6240 16h52m58.9s +02d24m03s 0.02 Komossa et al. (2003)

3 4c + 37.11 04h05m49.2s +38d03m32s 0.06 Rodriguez et al. (2006)

4 3c75 02h57m41.6s +06d01m29s 0.02 Hudson et al. (2006)

5 MRK 463 13h56m02.9s +18d22m19s 0.05 Bianchi et al. (2008)

6 CID 42 14h47m06.6s +11d35m29s 0.03 Civano et al. (2010)

7 2MASX J11312609-0204593 11h31m26.1s –02d04m59s 0.15 Liu et al. (2010)

8 SDSS J133226.34+060627.3 13h32m26.3s +06d06m27s 0.21 Liu et al. (2010)

9 NGC 326 00h58m22.7S +26d51m55s 0.05 Murgia et al. (2001)

10 NGC 3393 10h48m23.4s –25d09m43s 0.01 Fabbiano et al. (2011)

11 2MASX J11085103+0659014 11h08m51.0s +06d59m01s 0.18 Liu et al. (2010)

12 SDSS J150243.1+111557 15h02m43.1s +11d15m57s 0.39 Fu et al. (2011)

13 SDSS J095207.62+25527.2 09h52m07.6s +25d52m57s 0.34 McGurk et al. (2011)

14 MRK 739 11h36m29.1s +21d35m46s 0.03 Koss et al. (2012)

15 IRAS 05589+2828 06h02m10.7s +28d28m22s 0.03 Koss et al. (2012)

16 SDSS J142607.71+353351.3 14h26m07.7s +35d33m51s 1.16 Barrows et al. (2012)

17 MRK 266 13h38m17.5s +48d16m37s 0.03 Mazzarella et al. (2012)

18 ESO 509-IG066 NED 02 13h34m40.8s –23d26m45s 0.03 Koss et al. (2012)

19 IRAS 03219+4031 03h25m12.7s +40d41m58s — Koss et al. (2012)

20 NGC 3227 10h23m30.6s +19d51m54s 0.00 Koss et al. (2012)

21 J171544.02+600835.4 17h15m44.0s +60d08m35s 0.16 Comerford et al. (2013)

22 SDSS J102325+324348 10h23m25.6s +32d43m49s 0.13 Muller-Sanchez et al. (2015)

23 SDSS J115822+323102 11h58m22.6s +32d31m02s 0.17 Muller-Sanchez et al. (2015)

24 SDSS J162345+080851 16h23m45.2s +08d08m51s 0.20 Muller-Sanchez et al. (2015)

25 SDSS 114642.47+511029.6 11h46m42.5s +51d10m30s 0.13 McGurk et al. (2015)

26 SDSS J112659.59+294442.8 11h26m59.5s +29d44m43s 0.10 Comerford et al. (2015)

at all frequencies. The S-shaped jets are very symmetric and extend out to a distance of 1.5′′ (or

1.74 Kpc) on either side of a core of size 0.1′′ (or 116 pc where the galaxy distance is assumed to

be 245 Mpc) (Fig. 2). The structure is similar to precessing radio jets observed at larger scale in

galaxies (e.g. NGC 326) and our precession model gives a precession timescale of ∼105 years. We

also obtained a similar age from spectral aging analysis using the spectral index maps. We find that

the precessing jets could be due to binary or dual SMBHs, a single SMBH with a tilted accretion disk

or a dual SMBH in which a previous close passage of the SMBH caused the precession of the radio

jets.

4 AGN Feedback and Star Formation Triggered by DAGN

Dual or binary AGN will exert gravitational torques on the cold gas in the galaxy center, which

will drive the gas into the very inner regions (Mayer et al. 2007). The pile-up of dense gas will

result in nuclear star formation and often starburst activity. If the winds and outflows associated

with the star formation/AGN are strong enough, the infalling gas will be driven away resulting in

negative feedback. The negative feedback effects of DAGN may be larger than that of a single AGN.

Furthermore, in DAGN we may also see positive AGN feedback which arises due to the overlap

and interaction of the outflows due to the individual AGN. This can result in shocked gas that will
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Figure 1: This is the SDSS spectrum of the

nucleus of 2MASX J1203, showing the double

peaked emission lines in [OIII, 5007] and [OIII,

4959]. Note that the peaks are not equal, which

suggests that the emission arises from two dif-

ferent nuclei rather than a rotating disk.

Figure 2: The above figure shows the 11.5 GHz

EVLA image of 2MASX J1203 made with with

robust=0.5 (natural) weighting. The intensity

contours are overlaid and have 0.0.60, 1.25, 2.5,

5, 10, 20, 40, 60, 80% of the peak values of 5.5

mJy. The beam is 0.2′′ × 0.16′′ (Rubinur et al.

2017).

cool and then fall back onto the molecular disk, thus producing positive as well as negative AGN

feedback. This can enhance the nuclear star formation, feed AGN accretion and perhaps help the

two SMBHs coalesce faster. A good example of this scenario is NGC 6240 (Scoville et al. 2015)

and MRK 266 (Mazzarella et al. 2012), where the extended outflows drive gas out of the nucleus

(negative feedback) but dense gas has piled up between the nuclei and around the nuclei as a result of

gas shocked by colliding gas flows. Some of the cool gas maybe due to shocked, cooled gas falling

back onto the disk as well.

To understand the effects of DAGN on star formation we derived the star formation rate from

the near-UV (NUV) emission detected by GALEX from DAGN systems. Our results are shown in

Table 2. We have assumed Kroupa stellar IMF, with constant star formation over 100 Myr. The star

formation rate (SFR) is given by, SFR(UV)(M⊙ yr−1 = 3 × 10−47λ L(λ), where λ is the wavelength

in Angstrom and L is the luminosity in erg/s. However, the NUV emission does contain a contribution

from the AGN activity, but studies show that it varies from 8 to 20% of the total NUV flux (Fujita et

al. 2003). Of the 20 DAGN in Table 2, only two have SFR>10 M⊙ yr−1, of which one source is a

high redshift binary quasar (LBQS 0103-2753) and for the other source, very little is known (SDSS

J142607.71+353351.3). Thus we find that DAGN do not generally have elevated SFRs; this suggests

that the negative AGN feedback effects may be strong in these systems by driving away the gas.

We also compared the SFR in DAGN with normal dual nuclei host galaxies that do not have AGN

activity in both nuclei. The dual nuclei sample was obtained from Mezcua et al. (2014). We have

derived the (NUV-r) color for both DAGN (Table 1) and dual nuclei galaxies. The color (NUV-r) is

a measure of the star formation rate per unit stellar mass for these galaxies. We have plotted (NUV-

r) against the absolute r band magnitude which is a measure of the stellar mass in these galaxies

(Fig. 3). We can immediately see that the (NUV-r) colors of both DAGN and dual nuclei galaxies are

similar. Hence the presence of two AGN does not necessarily enhance the SFR in a galaxy. We also

obtain another interesting result, we find that the sources roughly divide into two groups according to

r magnitude. Both groups have similar (NUV-r) colors but the confirmed DAGN appear to lie in low

mass galaxies compared to the dual nuclei that are in more massive (or red) galaxies. There are a few
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Figure 3: The above figure is the (NUV-r) color plotted against the r band absolute magnitude of

the confirmed DAGN (Table 1) and a sample of dual nuclei galaxies from Mezcua et al. (2014).

The confirmed DAGN are filled black circles and the dual nuclei are marked with crosses.

dual nuclei sources falling into the confirmed DAGN group; they may harbour DAGN that have not

yet been detected. It is not clear whether the presence of two groups is an evolutionary effect, where

the DAGN reside in less massive galaxies evolving into more massive galaxies. We need to obtain a

larger sample to confirm this.

5 Conclusions

1. There are currently 26 confirmed DAGN described in the literature. DPAGN that can be identi-

fied from large spectroscopic surveys provide a reasonable method of selecting a sample of DAGN

candidates. DPAGN with higher stellar velocity dispersions may have a greater chance of harboring

DAGN.

2. We have done follow-up radio observations of two candidate DAGN that have double peaked emis-

sion lines in their optical spectra. We did not detect DAGN, but their presence cannot be ruled out in

both cases.

3. We have estimated the SFRs from the NUV fluxes of 20 DAGN galaxies. We find that the SFRs

are generally < 1 M⊙ yr−1 and are not exceptionally elevated. We compared the (NUV-r) colors

of DAGN host galaxies with galaxy mergers that have two nuclei but are not DAGN systems. The

SFRs are similar for both groups. This suggests that it is the merging process and not the DAGN that

contributes to the star formation in DAGN host galaxies.

4. We find that in the (NUV-r) vs M
r

plot, the dual AGN all have lower absolute M
r

values com-

pared to dual nuclei host galaxies. This suggests that dual AGN are more common in lower mass star

forming galaxies.
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Table 2: This table shows the NUV flux and the derived star formation rate of the sample of confirmed

DAGN (Table 1). Four galaxies are omitted as they do not have GALEX NUV data

Galaxy NUV Flux Distance SFR

Name (µJy) (Mpc) (M⊙ yr−1)

3c75 26.49 ± 2.52 93.9 0.01426

NGC 326 29.03 ± 5.03 197 0.0688241

NGC 6240 931.27 ± 9.78 103 0.603547

MRK 739 764.39 ± 16.81 130 0.789156

NGC 3393 1401.31 ± 20.75 56.8 0.27618

CID 42 18.80 ± 0.03 126 0.0182

LBQS 0103-2753 114.39 ± 3.64 5247 192.3

SDSS J095207.62+25527.2 40.61 ± 4.75 1740 7.51091

2MASX J11085103+0659014 50.73 ± 5.38 853 2.25488

SDSS J1131-0204E 18.02 ± 3.99 667 0.489742

SDSS J133226.34+060627.3 8.46 ± 1.89 986 0.502441

SDSS J142607.71+353351.3 0.35 ± 0.21 7899 39.4499

SDSS J102325+324348 12.90 577 0.24449

SDSS J115822+323102 12.77 774 0.467341

SDSS J162345+080851 12.22 ± 0.94 941 0.6610

SDSS 114642.47+511029.6 36.82 ± 3.19 590 0.782977

MRK 266 1224.72 ± 23.28 119 1.059

ESO 509-IG066 NED 02 129.03 ± 9.49 144 0.163447

NGC 3227 4705.13 ± 48.16 20.4 0.119617

SDSS J171544.02+600835.4 10.02 ± 0.17 644.5 0.254258
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