Stellar and Galactic studies with the 2-m Himalayan Chandra Telescope

Aruna Goswami
Indian Institute of Astrophysics, Koramangala 2nd Block, Bengaluru, India, 560034

Abstract

The Himalayan Chandra Telescope (HCT), of the Indian Astronomical Observatory (IAO), is currently one of the most heavily subscribed telescopes in India. The telescope has been in regular use for scientific observations by national as well as international astronomical communities since May 2003. Over the past fifteen years, various observational programs have been carried out using HCT contributing to our understanding of many different aspects of stellar and Galactic astronomy. Here, a glimpse of spectroscopic studies made using HCT is provided with an aim to expand potential collaboration in the area of stellar and Galactic studies using these observing facilities. Some results from our long-term observing program on a search for CH stars from low resolution spectroscopy of high Galactic latitude objects that has given us the potential to discover objects of rare types are discussed.

Keywords: stars: carbon - stars: classification - stars: s-process elements

1 Introduction

HCT is a $2-\mathrm{m}$ aperture optical-infrared telescope at the Indian Astronomical Observatory (IAO), Hanle. It is remotely operated from the Centre for Research \& Education in Science \& Technology (CREST), Hosakote via a dedicated satellite link. The telescope was released for science observations in May 2003. Currently, the telescope is equipped with three science instruments, namely, the Himalaya Faint Object Spectrograph (HFOSC), the TIFR near-infrared Imaging Spectrograph (TIRSPEC), and the Hanle Echelle Spectrograph (HESP). These intruments are mounted on an instrument mount cube at the cassegrain focus of the telescope that has four side ports and an on-axis port, which makes all three instruments available mounted on the telescope ${ }^{1}$. HFOSC, is an optical imager cum spectrograph. It is possible to shift between the imaging and spectroscopic modes of operation in seconds. TIRSPEC, mounted on HCT covers wavelength from 1 to 2.5 micron, with a resolution of ~ 1200, for near-infrared medium resolution spectroscopy. The instrument provides a Field of View (FoV) of $307 \times 307 \mathrm{arcsec}^{2}$ in imaging mode. In spectroscopy mode, the instrument can be used in single order mode to cover 1.02-1.20 micron, 1.21-1.48 micron, 1.49-1.78 micron and 2.04-2.35 micron. In cross disperse modes, the instrument provides simultaneous coverage of 1.02-1.49 micron and 1.50-2.45 micron ${ }^{2}$. The instrument is sensitive to low temperature stellar photospheres ($\mathrm{T} \leq 2500$ K) and objects surrounded by warm dust envelopes or embedded in dust or molecular clouds. It is

[^0]particularly suited for searching for low-mass stellar populations (M, L dwarfs, brown dwarfs), strong mass-losing stars on the asymptotic giant branch, young stellar objects still in their protostellar envelopes and active galactic nuclei (Ojha et al. 2012). HESP is a fibre-fed, high resolution ($\mathrm{R}=30,000$ and 60,000$)$ spectrograph, the wavelength coverage spans from 350 to 1000 nm . The instrument is well suited for chemical composition studies of stars belonging to different evolutionary stages that are brighter than $\mathrm{V}_{\text {mag }} \sim 13$. The high mechanical stability and double fibre mode allow measurement of precise radial velocities, essential for programs such as exoplanet studies and asteroseismology ${ }^{3}$.

All the three instruments are used regularly to address a variety of challenging astrophysical problems. While HFOSC is the first light instrument, TIRSPEC was made available for observations since May 2014, and the HESP from January 2017. Understanding stellar nucleosynthesis, and chemical and dynamical evolution of our Galaxy is one of the primary areas of interest, and several on-going programs at HCT use low as well as high resolution spectroscopy to study stars belonging to different evolutionary stages: F-G supergiants, metal-poor stars, Li-rich stars, K-giants, CH stars, barium stars, carbon stars as well as hydrogen deficient carbon stars etc.

Standard stellar evolutionary models predict severe depletion of surface Li abundance, which is as low as 1.4 dex in K giants (Iben 1967), a factor of about 80 lower than the maximum value of about 3.3 dex observed in main sequence stars. Contrary to predictions and general observational trends the discovery of high Li abundance $(\mathrm{A}(\mathrm{Li})=2.95)$, in a normal K giant (Wallerstein and Sneden 1982) naturally raised questions regarding the formation and evolution of Li in RGB stars, that still remain poorly understood. Since then, more Li-rich giants have been discovered. In an observing program with HFOSC about 2000 K giants were subjected to low resolution spectroscopy, and about 15 Li -rich stars were detected (Kumar et al. 2015). The sample contained stars in the H-R diagram, along the RGB starting from the first dredge-up to well above the luminosity bump.

Observation of R Coronae Borealis type stars (RCBs), Dy Per like stars and extreme helium stars (EHes) is another long term observing program with HCT. These objects are low mass hydrogen deficient supergiants associated with very late stages of stellar evolution. Understanding evolutionary connection between RCBs, DY Pers, EHes, and HdCs still remains an outstanding problem. ${ }^{18} \mathrm{O}$ is highly enhanced and ${ }^{13} \mathrm{C}$ is negligible in RCBs and HdCs than in normal carbon stars, and these are clues to their origin and evolution. Using TIRSPEC, from ${ }^{12} \mathrm{C}^{18} \mathrm{O}$ and ${ }^{13} \mathrm{C}^{18} \mathrm{O}$ molecular bands observed in K-band, the isotopic ratios measured on the spectra of DY Per candidates were found to be consistent with that of RCB and HdC stars indicating that DY Per type stars could be related to the RCB/HdC class of stars (Bhowmick et al. 2018).

Observational programs with HCT also include studies on characteristic properties of molecular clouds, star forming regions, diffuse interstellar matter, Young Stellar Objects, chromospherically active stars, and Planetary Nebulae that provide insight and better understanding of star formation. Finding new variable star candidates from open clusters and Globular clusters, using both photometry and spectroscopy are also long-term observational programs. Over the last ten years or so, timeseries CCD observations of a family of selected Globular Clusters north of -20 degrees, have led to the discovery of many new variables of several types RR Lyrae, SX Phe, anomalous Cepheids, binary stars, and large populations of Blazhko variables even among the RRc stars (A. A. Ferro and collaborators).

There are also a few observing programs with primary objectives to detect exoplanets, monitoring transiting exoplanets, and studying characteristic properties of stars with planets, and low-mass eclipsing binaries using HESP. Time domain astronomy with HCT includes IR and optical followup studies on novae and cataclysmic variables, symbiotic stars, supernovae, and gamma-ray burst sources. In the following, we will discuss our long term observational program with HCT using HFOSC on a search for CH stars. Some results from this program have been already published in our

[^1]earlier papers (Goswami 2005, Goswami et al. 2007, 2010a); here we summarize the main results and present a compilation of the potential CH star candidates including the new detections made after these works (Table 1).

2 Why search for CH stars

CH stars characterized by iron-deficiency and carbon enhancement (with $-2 \leq[\mathrm{Fe} / \mathrm{H}] \leq-1,[\mathrm{C} / \mathrm{Fe}]$ $\geq 0.7,[\mathrm{Ba} / \mathrm{Fe}] \geq 1.0$) are a distinct group of stars (Keenan 1942) that are long been used as halo tracers. CEMP-s stars (Beers \& Christlieb 2005) with $[\mathrm{C} / \mathrm{Fe}]>1$ and $[\mathrm{Fe} / \mathrm{H}]<-2$ that also show s-process enhancement are more metal-poor counterparts of CH stars and believed to be extrinsically enriched with carbon and s-process elements. Chemical composition studies of a number of these objects have demonstrated that significant insight into the neutron-capture processes taking place in the early Galaxy can be derived from these objects (Norris et al. 1997a 1997b, 2002; Bonifacio et al. 1998; Hill et al. 2000; Aoki et al. 2002; Goswami et al. 2006, 2016, Aoki et al. 2007). These stars characterized by strong G-band of CH , and s-process elements play significant roles in probing the impact of s-process mechanisms in early Galactic Chemical Evolution (GCE), providing insight into the time of influence of this process on early GCE. Nucleosynthesis theories do not support the occurrence of s-process nucleosynthesis during the stellar evolutionary phases to which these stars belong. CH stars are found to be as binaries with a now invisible white dwarf companion (McClure et al. 1980, McClure 1983, 1984, McClure \& Woodsworth 1990) showing radial velocity variability. These stars are believed to have received, via binary mass transfer mechanisms, the products of the companion stars produced during their AGB phase of evolution. Hence, the chemical composition of this class of objects can be used to trace the AGB nucleosynthesis at low-metallicity. However, high-resolution spectroscopic analysis for a large sample of these stars is needed to understand the distribution of neutron-capture elements with respect to metallicity and their contribution to the Galactic chemical enrichment. As the metallicity decreases, the number of seed nuclei for neutron-capture decreases, and this favours the production of heavy s-process elements, increasing the [hs/ls] ratio, where hs refers to the heavy s-process elements and ls refers to the light s-process elements. Hence, the [hs/ls] ratio could provide clues to the origin of the s-process nucleosynthesis, the reactions operating at different metallicities and hence to the chemical enrichment of the Galaxy. Accurate identification and spectroscopic characterization of CH stars are therefore very essential. However, literature survey shows that not many CH stars have been studied in detail. The main difficulty lies in distinguishing these objects from other carbon stars, such as Pop I C-R and C-N stars. At low resolution, the dwarf carbon stars also exhibit remarkably similar spectra to those of C giants.

3 Selection of program stars

Program stars are chosen from the list of Faint High Latitude Carbon (FHLC) stars of Christlieb et al. (2001) that contains a sample of 403 stars. Some field stars are also included based on their high proper motion estimates. The identification of FHLC stars was based on a measure of line indices - i.e. ratios of the mean photographic densities in the carbon molecular absorption features and the continuum band passes. They primarily considered strong C_{2} and CN molecular bands shortward of $5200 \AA$ but not the CH bands. We have undertaken to search for CH stars in this sample based on a set of well defined spectral criteria (section 5). We have selected objects with $\mathrm{V}_{\text {mag }} \leq 16$ and limited by declination - 26 degree.

Figure 1: Sample spectra of CH stars in the wavelength region 4100-5400 \AA. Prominent features seen on the spectra are indicated.

4 Observation and Data Reduction

The stars are observed with 2-m HCT using HFOSC. Spectra of a number of stars such as HD 182040, HD 26, HD 5223, HD 209621, Z PSc, V460 Cyg and RV Sct that belong to different classes of carbon stars are also taken for a comparison. The grism and the camera combination used for observation provided a spectral resolution of $\sim 1330(\lambda / \delta \lambda)$; the observed bandpass ran from about 3800 to 6800 \AA. Observations of Fe-Ar hollow cathod lamp provided the wavelength calibration. Data reduction is carried out using the IRAF 4 software spectroscopic reduction packages. A few sample spectra of CH stars are shown in Figure 1.

5 Spectral analysis and Results

To establish the membership of a star in a particular group we have conducted a differential analysis of the program stars spectra with the spectra of carbon stars available in the low resolution spectral atlas of carbon stars of Barnbaum et al. (1996). However, in order to be able to make a comparison at the same resolution we have acquired a few spectra of comparison stars from Barnbaum et al. (1996) using HFOSC.

In the Morgan-Keenan system (Keenan 1993) carbon stars are divided into C-R, C-N and C-H sequence, with subclasses running to C-R6, C-N6 and C-H6 according to temperature criteria.

The C-N stars have stronger molecular bands and lower surface temperatures than those of C-R stars. C-N stars exhibit strong depression of light in the violet part of the spectrum below about $4500 \AA$ which is believed to be due to scattering by particulate matter. These stars are easily detectable from their characteristic infrared colours. The majority of C-N stars show ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ values more than 30 , ranging nearly to 100 while in C-R stars this ratio ranges from 4 to 9 (Lambert et al. 1986).

[^2]C-R as well as CH stars have warmer temperatures and blue/violet light is accessible to observation and atmospheric analysis. The s-process element abundances are nearly solar in C-R stars (Dominy 1984) whereas CH stars show significantly enhanced abundances of the s-process elements relative to iron (Lambert et al. 1986, Green \& Margon 1994). However, at low dispersion, the narrow lines are difficult to estimate and essentially do not provide with a strong clue to distinguish C-R stars from CH stars.

CH stars form a group of warm stars of equivalent spectral types G and K normal giants but show weaker metallic lines. In general, CH stars are high velocity objects, large radial velocities indicate they belong to the halo population of the Galaxy (McClure 1983, 1984, McClure \& Woodsworth 1990).

As many C-R stars also show quite strong CH band, the strength and shape of the secondary Pbranch head near $4342 \AA$ is used as a more useful indicator to distinguish them. This is a well-defined feature in CH stars spectra in contrast to its appearance in C-R stars spectra. Another important feature is the strength of CaI at $4226 \AA$ which in case of CH stars is weakened by the overlying faint bands of the CH band systems. In C-R star this feature is quite strong with band depths deeper than the depth of CN molecular band around $4215 \AA$. Another important feature is the strength of the MerrillSanford (M-S) bands usually ascribed to SiC_{2}, that appear in the wavelength region 4900-4977 \AA. In general, stars with low ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ ratios show strong M-S bands. WZ Cas, V Aql and U Cam are a few exceptions which have low ${ }^{13} \mathrm{C}$ but strong M-S bands (Barnbaum et al. 1996). SiC_{2} being a triatomic molecule, M -S bands are expected to be the strongest in the coolest stars. SiC_{2} and C_{3} have similar molecular structures, and in many C stars the C_{3} molecule is believed to be the cause of ultraviolet depression (Lambert et al. 1986). M-S bands appear most often in C-J stars, although they are found in some warmer C-N stars. M-S bands are not known to be present in CH stars.

Based on the above spectral characteristics, we have identified twenty two new CH star candidates from spectral analysis of about eighty new objects studied recently. These potential CH star candidates are listed in Table 1, along with those found in our previous studies (Goswami 2005, Goswami et al. 2007, 2010a). All the stars listed in Table 1, are found to fall well within the CH box (Figure 3) defined by Totten et al. (2000).

Strong C-molecular bands but weak CH band characterize the class of hydrogen deficient carbon stars. In the entire sample of stars studied so far, we have found only one object, HE 1015-2050, to exhibit spectral characteristics of cool HdC star (Goswami et al. 2010b). Figure 2, shows a comparison of the spectrum of this object with other types of carbon stars. Its spectrum matches closely with that of U Aqr. Location of this object in the J-H vs. H-K diagram (figure 3) in the vicinity of U Aqr, HD 182040 and R CrB supports its identification with the group of HdC stars.

6 Concluding Remarks

The list of potential CH star candidates presented here is based on our analysis of low resolution spectra acquired through our on-going observational programs with HCT using HFOSC. Although this observing program has been running for several years, since 2003, the actual observing nights are about two to three nights per observing cycle (in a year there are three observing cycles, each cycle of four months). On many occasions, the allotted nights were not useful for observations due to thick passing clouds and/or strong winds in the direction of our objects. Nonetheless, over the years we have acquired spectra for a sizable fraction from the list of objects we have originally proposed for observation.

The objects identified as potential CH star candidates will be taken up for a follow-up highresolution spectroscopic study for confirmation of these objects with this class of identification and for a detail study of their chemical composition. Efforts are on to acquire high resolution spectra

Figure 2: A comparison between the spectrum of HE 1015-2050 with the spectra of V460 Cyg (C-N star), U Aqr, ES Aql (cool HdC stars of RCB type), HD 182040 (a non-variable HdC star), HD 156074 (C-R star), and HD 209621 (CH star) in the wavelength region 3850-4950 \AA. G-band of CH distinctly seen in the CH and C-R star's spectra are barely detectable in the spectra of HE 1015-2050 and other HdC stars spectra. The large enhancement of Sr II at $4077 \AA$ in the spectrum of U Aqr is easily seen to appear with almost equal strength in the spectrum of HE 1015-2050. Y II line at $3950 \AA$ is detected in the spectra of both HE 1015-2050 and U Aqr. The most striking feature in the spectra of U Aqr and HE 1015-2050 is the strength of the Sr II λ 4215 line; this feature is inextricably blended with the nearby strong blue-degraded $(0,1) \mathrm{CN} 4216$ band head in HD 182040. The spectrum of HE 1015-2050 compares closest to the spectrum of U Aqr. (Figure 1, in Goswami et al. 2010b)

Figure 3: J-H versus H-K colour magnitude diagram of the stars listed in Table 1. The CH stars are represented by open circles. The C-N stars are shown with solid triangles, C-R stars with open hexagons. The position of the HdC star HE 1015-2050 is shown by a filled circle. The thick closed box represents the location of CH stars and the thin box on the upper right represents the location of C-N stars (Totten et al. 2000)
for some of these objects, using existing $8-10 \mathrm{~m}$ class telescopes as well as HESP attached to HCT. The two main properties, presence or absence of s-process elements and binarity that differentiate early-R stars from CH stars, can be obtained only through detailed abundance studies that require high resolution spectroscopy, and from long-term radial velocity monitoring. As the objects are quite faint, high resolution spectroscopic studies become arduous and time-consuming. While in this work we have focussed on CH stars, a detail discussion on objects of other spectral types will be presented in a sequel (under preparation).

Acknowledgements

AG would like to acknowledge the organizers of $2^{\text {nd }}$ BINA workshop for the local hospitality and the financial support. The funds from BINA projects DST/INT/Belg/P-02 (India) and BL/11/IN07 (Belgium) and funding from DST SERB project No. EMR/2016/005283 are gratefully acknowledged. The author would like to thank Meenakshi and Drisya for help with data reduction.

References

Aoki W., Ryan S. G., Norris J. E. et al. 2002, ApJ, 580, 1149
Aoki W., Beers T.C., Christlieb N. et al. 2007, ApJ, 655, 492
Barnbaum C., Stone R. P. S., Keenan P. 1996, ApJS, 105, 419
Beers T. C., Christlieb N. 2005, ARA\&A, 43, 531
Bhowmick A., Pandey G., Joshi V. et al. 2018, ApJ, 854, 140
Bonifacio P., Molaro P., Beers T. C. et al. 1998, A\&A, 332, 672
Christlieb N., Green P. J., Wisotzki L. et al. 2001, A\&A, 375, 366
Goswami A. 2005, MNRAS, 359, 531
Goswami A., Aoki W., Beers T. C. et al. 2006 ,MNRAS, 372, 343
Goswami A., Bama P., Shantikumar N. S. et al. 2007, BASI, 35, 339
Goswami A., Karinkuzhi D., Shantikumar N. S. 2010a, MNRAS, 402, 1111
Goswami A., Karinkuzhi D., Shantikumar N. S. 2010b, ApJL, 723, 238
Goswami A., Aoki W., Karinkuzhi D. 2016, MNRAS, 455, 402
Green P. J. \& Margon, B. 1994, ApJ, 423, 723
Hill V., Barbuy B., Spite M. et al. 2000, A\&A, 353, 557
Iben I. J. 1967, ApJ, 147, 624
Keenan Philip C. 1942, ApJ, 96, 101
Keenan Philip C. 1993, PASP, 105, 905
Kumar Y. B., Reddy B. E., Muthumariappan C. et al. 2015, A\&A, 577, 10
Lambert D. L., Gustafsson B., Eriksson K. et al. 1986, ApJS, 62, 373
McClure R. D. 1983, ApJ, 268, 264
McClure R. D. 1984, PASP, 96, 117
McClure R. D., Woodsworth W. 1990, ApJ, 352, 709
McClure R. D., Fletcher J. M., Nemec J. M. 1980, ApJ, 238, 35
Norris J. E., Ryan S. G., Beers T. C. 1997a, ApJ, 488, 350
Norris J. E., Ryan S. G., Beers T. C. 1997b, ApJ, 489, L169
Norris J. E., Ryan S. G., Beers T. C. et al. 2002, ApJ, 569, L107
Ojha D. K., Ghosh S. K., D’Costa S. L. A. et al. 2012, ASInC, Vol 4, 191
Totten E. J., Irwin M. J., Whitelock P. A. 2000, MNRAS, 314, 630
Wallerstein G., Sneden C. 1982, ApJ, 255, 577

Table 1: Potential CH star candidates. Quantities labelled with a * upper index are taken from Christlieb et al. (2001b).

Star No.	RA(2000)	DEC(2000)	1	b	B_{J}^{*}	V*	B- ${ }^{*}$	U-B*	J	H	K	Dt of obs.
HE 0008-1712	001119.2	-165534	78.58	-76.21	16.5	15.2	1.78	1.64	13.630	13.069	12.975	6.12 .2008
HE 0017+0055	002021.6	+01 1207	106.90	-60.70	12.6	-	-	-	9.309	8.693	8.498	15.11.2003
HE 0038-0024	004048.2	-00 0805	117.09	-62.89	15.4	14.4	1.86	1.67	12.433	11.768	11.573	6.11.2004
HE 0039-2635	004139.7	-261853	52.81	-87.67	13.33	12.22	1.11	-	10.571	10.115	9.996	6.12.2016
HE 0043-2433	004543.9	-24 1648	98.33	-86.88	13.8	13.1	1.04	1.0	11.064	10.493	10.365	7.11.2004
HE 0052-0543	005500.0	-05 2702	125.33	-68.30	16.5	15.0	1.95	1.74	12.952	12.241	12.086	12.09.2008
HE 0100-1619	010241.6	-160301	136.76	-78.61	15.9	14.7	1.54	1.28	13.114	12.537	12.476	21.11.2008
HE 0110-0406	011237.1	-03 5030	136.11	-66.17	13.4	-	-		10.523	9.988	9.866	17.09.2003
HE 0111-1346	011346.5	-13 3049	145.01	-75.42	13.3	-	-	-	10.684	10.155	10.039	7.11.2004
HE 0113+0110	011552.2	012621	135.53	-60.83	16.73	15.0	1.73	1.62	13.028	12.360	12.237	6.12.2016
HE 0114-1129	011640.3	-111314	144.59	-72.02	15.95	14.3	1.65	1.25	12.765	12.216	12.048	23.10.2005
HE 0136-1831	013901.8	-181643	176.49	-75.91	16.9	15.6	1.72	1.43	14.216	13.679	13.532	12.09.2008
HE 0150-2038	015310.9	-20 2404	190.75	-74.37	15.95	14.2	1.75	1.55	12.367	11.822	11.630	23.10.2005
HE 0151-0341	015343.3	-0327 14	157.78	-62.04	14.6	13.4	1.27	0.87	11.847	11.364	11.248	7.11.2004
HE 0206-1916	020919.6	-19 0156	192.69	-70.38	15.07	13.9	1.17	0.63	12.243	11.765	11.660	23.10.2005
HE 0219-1739	022141.4	-1725 37	192.66	-67.03	15.85	14.1	1.75	1.51	12.537	11.884	11.754	22.10.2005
HE 0225-0546	022819.4	-05 3258	174.17	-58.42	16.5	15.2	1.79	1.51	13.347	12.707	12.528	6.12.2008
HE 0237-0835	024013.63	-08 2217.8	181.93	-58.16	17.27	15.60	1.67	1.42	13.706	13.136	12.987	6.12.2009
HE 0251-2118	025342.6	-21 0559	207.40	-61.53	14.67	13.30	1.37	1.24	11.48	10.956	10.822	6.12.2016
HE 0258-0218	030104.89	-020617.0	179.61	-50.13	16.31	14.80	1.51	1.21	13.478	12.881	12.796	5.12.2009
HE 0308-1612	031027.1	-1600 41	201.12	-55.96	12.5	-	-	-	10.027	9.475	9.331	17.09.2003
HE 0314-0143	031722.2	-013237	182.98	-46.69	12.7	-	-	-	8.993	8.222	8.000	17.09.2003
HE 0319-0215	032146.3	-0204 34	184.58	-46.17	14.6	13.6	1.43	1.01	11.785	11.218	11.063	16.09.2003
HE 0322-1504	032440.1	-145424	201.90	-52.39	15.0	13.8	1.63	1.24	12.105	11.533	11.340	6.11 .2004
HE 0420-1037	042247.0	-1030 26	205.04	-37.71	15.2	14.7	1.38	0.99	12.341	11.815	11.695	21.11.2008
HE 0457-1805	045943.6	-180111	217.85	-32.51	12.1	11.2	1.25	1.20	8.937	8.421	8.186	7.11.2004
HE 0507-1653	050916.5	-1650 05	217.54	-29.96	15.6	12.4	1.06	0.68	10.883	10.430	10.315	6.11 .2004
HE 0507-1430	051007.6	-142632	215.09	-28.84	16.06	14.40	1.66	1.4	12.325	11.717	11.575	20.12.2012
HE 0516-2515	051809.4	-25 1225	227.48	-30.86	15.57	13.90	1.67	1.58	11.253	10.592	10.349	6.12.2016
HE 0518-2322	052035.5	-23 1914	225.62	-29.74	13.7	-	-	-	11.151	10.672	10.568	15.11.2003
HE 1008-0946	101122.4	-100113	251.16	+36.29	17.2	15.8	1.42	1.23	13.223	12.630	12.499	6.12.2016
HE 1027-2501	102929.5	-25 1716	266.68	+27.42	13.9	12.7	1.73	1.51	-	-	-	30.03.2004
HE 1045-1434	104744.1	-145023	263.59	38.40	15.5	14.6	1.23	0.96	12.935	12.449	12.244	9.04 .2007
HE 1051-0112	105358.8	-0128 15	253.52	49.79	17.0	16.0	1.44	0.94	14.347	13.794	13.703	6.12.2008
HE 1051-0518	105428.8	-05 3421	257.71	+46.77	14.68	13.2	1.48	1.26	11.351	10.781	10.625	30.03.2005
HE 1056-1855	105912.2	-19 1108	269.48	+36.29	13.6	-	-	-	10.784	10.249	10.09	20.12.2004
HE 1058-2228	110121.8	-22 4430	272.21	+33.48	14.20	13.5	1.06	0.97	12.040	11.547	11.390	19.02.2006
HE 1102-2142	110431.2	-215829	272.52	34.50	16.0	14.9	1.44	0.98	13.275	12.714	12.601	16.03.2009
HE 1110-0153	111302.7	-02 0928	261.14	52.48	16.5	15.5	1.47	1.29	12.912	12.205	12.063	4.04.2009
HE 1119-1933	112143.5	-1949 47	275.73	38.25	12.8	14.6	1.34	0.87	13.043	12.571	12.422	18.03.2009
HE 1125-1357	112743.0	-1413 32	274.20	+43.93	15.2	14.1	1.41	1.40	11.730	11.057	10.842	12.04.2004
HE 1120-2122	112318.6	-213833	277.12	36.77	12.9	-	-	-	9.573	8.902	8.788	17.03.2009
HE 1123-2031	112608.7	-204819	277.44	37.80	16.8	15.8	1.33	1.19	13.513	12.940	12.800	18.03.2009
HE 1142-2601	114452.9	-261829	284.84	34.21	13.9	13.0	1.28	1.07	11.218	10.675	10.539	4.04.2009
HE 1145-0002	114759.8	-00 1919	271.30	+58.60	13.5	13.6	1.48	1.49	10.911	10.240	10.006	11.04.2004
HE 1145-1319	114821.4	-133638	280.37	46.48	16.4	15.4	1.37	1.32	13.466	12.934	12.790	$\begin{gathered} 17.03 .2009 \\ 5.04 .2009 \end{gathered}$
HE 1146-0151	114902.3	-0208 11	273.28	57.09	14.9	14.2	0.96	0.97	12.929	12.400	12.262	16.03.2009
HE 1152-0355	115506.1	-04 1224	277.32	+55.84	13.88	11.4	-	-	9.339	8.665	8.429	29.01.2005
HE 1157-1434	120011.5	-145050	284.88	46.22	16.1	13.8	1.62	1.41	11.792	11.178	11.019	6.06.2007
												7.06.2007
HE 1157-0518	120018.06	-05 3443.1	280.33	+55.03	16.27	15.120	1.14	0.97	13.418	12.917	12.846	17.05.2016
HE 1158-0708	120049.2	-07 2533	281.59	+53.33	16.69	15.00	1.69	1.58	13.381	12.616	12.485	25.01.2010
HE 1204-0600	120711.6	-061706	283.56	+54.91	14.9	14.0	1.36	1.45	11.517	10.898	10.703	11.04.2004
HE 1205-2539	120808.1	-25 5638	290.89	35.91	13.6	15.4	1.91	1.72	13.313	12.665	12.540	17.03.2009
HE 1210-2636	121259.7	-265322	292.43	35.19	13.8	12.6	1.65	1.52	-	-	-	6.05.2009
HE 1211-0435	121412.0	-045226	285.83	+56.76	15.0	14.2	1.08	0.90	12.492	11.962	11.916	12.04.2004
HE 1212-0323	121529.1	-03 4023	285.82	+57.99	16.33	15.00	1.33	1.31	13.038	12.426	12.291	30.03.2017
HE 1221-0651	122349.95	-070754	290.9	+55.09	16.13	14.80	1.33	1.36	13.037	12.423	12.307	5.03.2010
HE 1228-0417	123112.5	-04 3340	293.40	57.93	14.8	14.0	1.17	0.96	12.406	11.969	11.818	4.04.2009
HE 1230-0230	123326.4	-024708	293.98	+59.77	14.07	12.7	1.37	1.43	10.094	9.421	9.259	29.03.2005
HE 1236-0337	123904.59	-03 5424.8	296.96	+58.82	16.88	15.40	1.48	1.58	13.231	12.611	12.432	17.04.2017
HE 1251-2313	125430.92	-232934.9	303.84	+39.37	14.75	13.50	1.25	0.84	11.851	11.376	11.251	17.04.2017
HE 1253-1859	125638.4	-19 1532	304.62	43.59	13.7	12.9	1.09	1.22	10.60	9.972	9.850	16.03.2009
HE 1255-2324	125801.17	-23 4024.1	304.87	+39.17	11.97	10.63	1.34	-	8.659	8.171	8.00	25.01.2010
HE 1259-2550	130235.40	260649.51	306.05	+36.69	14.45	12.60	1.85	1.54	9.746	9.011	8.680	17.04.2017
HE 1304-2046	130650.1	-2102 10	307.75	+41.69	15.2	14.3	1.32	1.36	11.978	11.386	11.219	30.03.2004
HE 1305+0007	130803.8	-00 0848	311.94	+62.43	13.98	12.2	-	-	10.247	9.753	9.600	29.01.2005
HE 1305+0132	130817.8	+011649	312.52	+63.84	13.8	12.8	1.35	1.25	10.621	9.994	9.814	28.03.2004
HE 1308-1012	131110.9	-102835	310.84	+52.09	14.93	13.70	1.23	0.95	12.417	11.970	11.871	17.04.2017
HE 1318-1657	132119.4	-17 1340	313.05	+45.05	15.82	14.40	1.42	1.26	12.509	11.997	11.814	17.04.2017
HE 1328-0404	133111.6	-04 1936	321.41	+57.11	14.6	13.5	1.10	0.94	11.599	11.071	10.930	31.03.2005
HE 1331-2558	133420.1	-2613 38	314.78	35.65	13.9	16.0	1.53	1.10	10.998	10.394	10.240	18.03.2009
												17.03.2009
HE 1331-0247	133432.0	-03 0230	323.61	+58.09	14.32	13.0	1.32	1.31	10.998	10.394	10.240	30.03.2005
HE 1404-0846	140655.1	-09 0058	332.38	49.48	15.3	14.2	1.52	1.29	12.435	11.783	11.681	7.06.2007
HE 1405-0346	140758.3	-04 0103	336.53	53.78	14.7	13.5	1.68	1.28	11.608	11.068	10.903	16.03.2009
HE 1410+0213	141306.5	+015921	344.28	+58.15	13.90	13.2	1.09	0.68	11.563	11.053	10.968	19.02.2006

Table 1: (continued)

Star No.	RA(2000)	DEC(2000)	1	b	B_{J}^{*}	V*	B-V*	U-B*	J	H	K	Dt of obs.
HE 1410-0125	141324.7	-013954	340.63	55.09	-	-	-	-	10.360	9.770	9.651	16.03.2009
												11.06.2008
HE 1418+0150	142101.2	+013718	346.80	56.66	13.70	-	-	-	9.988	9.356	9.127	19.02.2006
HE 1425-2052	142839.5	-210605	331.40	36.33	13.6	12.7	1.27	1.29	10.043	9.446	9.273	17.03.2009
HE 1429-0551	143231.3	-06 0500	343.02	48.76	13.5	-	-	-	10.734	10.272	10.066	5.09.2003
HE 1430+0227	143246.5	021444	351.53	55.24	17.59	15.9	1.69	1.75	14.024	13.482	13.310	17.05.2016
HE 1431-0245	143354.2	-02 5833	346.31	51.05	16.58	15.3	1.28	1.02	13.56	13.012	12.992	19.02.2017
HE 1431-0755	143432.7	-08 0837	341.88	46.78	14.6	13.5	1.51	1.44	11.283	10.605	10.422	8.05.2007
HE 1440-1511	144307.1	-15 2348	338.73	39.57	14.5	13.5	1.13	0.87	12.238	11.757	11.606	9.05.2007
HE 1442-0346	144502.04	-03 5845.5	348.70	48.53	16.67	15.4	1.27	0.93	13.749	13.249	13.113	17.04.2017
HE 1446-0112	144902.2	-01 2524	352.42	49.80	14.5	13.5	1.38	1.39	10.983	10.379	10.162	6.09.2003
HE 1447+0102	145015.1	+005015	355.22	51.22	15.6	15.0	0.9	0.14	13.207	12.760	12.682	8.04.2007
HE 1523-1155	152641.0	-120543	351.87	35.63	14.2	13.4	1.14	0.70	11.372	10.846	10.748	29.03.2004
HE 1524-0210	152656.9	-02 2045	0.98	42.35	14.4	13.3	1.53	1.25	11.740	11.079	10.896	6.09.2003
HE 1525-0516	152752.2	-05 2704	358.11	40.10	16.8	15.8	1.29	1.14	13.972	13.479	13.314	11.06.2008
												7.06.2007
												8.06.2007
HE 1528-0409	153054.3	-04 1940	359.87	40.30	15.8	15.0	1.10	0.78	12.945	12.455	12.358	29.03.2004
HE 2114-0603	211720.8	-05 5048	45.54	-34.94	16.7	15.4	1.80	1.58	12.472	11.786	11.615	11.09.2008
												9.05.2007
HE 2144-1832	214654.7	-181815	34.65	-46.78	12.6	-	-	-	8.768	8.180	7.958	16.09.2003
HE 2145-1715	214844.5	-170103	36.63	-46.73	14.2	13.2	1.39	1.18	11.032	10.356	10.255	17.09.2003
HE 2153-2225	215634.3	-22 1125	30.16	-50.16	14.91	13.5	1.41	1.15	11.446	10.847	10.764	26.07.2005
HE 2153-2323	215637.6	-23 0925			16.10	14.5	1.60	1.44	12.526	11.916	11.741	26.07.2005
HE 2201-0345	220357.5	-03 3054	56.05	-43.59	15.36	14.1	1.26	0.53	12.378	11.886	11.773	22.10.2005
HE 2207-0930	220957.5	-09 1606	50.27	-47.96	14.4	13.1	1.82	1.40	10.527	9.812	9.607	16.09.2003
HE 2207-1746	221037.5	-173138	38.87	-51.77	11.8	-	-	-	9.115	8.579	8.450	6.09.2003
HE 2211-0605	221353.5	-05 5106	55.30	-46.95	16.0	15.1	1.21	1.01	13.383	12.875	12.727	24.07.2008
HE 2218+0127	222126.1	+014220	65.46	-43.80	14.6	14.0	0.80	0.31	11.826	11.509	11.433	16.09.2003
HE 2221-0453	222425.7	-043802	59.04	-48.38	14.7	13.7	1.36	1.11	11.524	10.997	10.815	17.09.2003
HE 2228-0137	223126.2	-01 2142	64.49	-47.70	15.8	14.7	1.56	1.20	12.301	11.715	11.589	11.09.2008
												25.07.2009
HE 2234-1017	223725.4	-10 0219	54.90	-54.12	15.64	14.2	1.44	1.43	12.420	11.913	11.753	22.10.2005
HE 2246-1312	224926.4	-125635	53.29	-58.15	17.0	15.9	1.56	1.60	14.101	13.472	13.303	11.09.2008
												25.07.2008
HE 2339-0837	234159.9	-08 2119	78.51	-65.05	14.9	14.0	1.32	0.62	12.632	12.107	12.026	6.11.2004

[^0]: ${ }^{1}$ (https://www.iiap.res.in/?q=telescope_iao)
 ${ }^{2}$ (https:// web.tifr.res.in/ daa/tirspec/)

[^1]: ${ }^{3}$ (https:// www.iiap.res.in/?q=hanle_echelle_spectrograph)

[^2]: ${ }^{4}$ IRAF (Image Reduction and Analysis Facilty) is distributed by the National Optical Astronomical Observatories, which is operated by the Association for Universities for Research in Astronomy, Inc., under contract to the National Science Foundation.

