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ABSTRACT

New metrics in the set of planar bodies are proposed : one is a generalization of the
Hausdorff distance, using any convex body as structuring element, the other ones are based on
radial functions.
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INTRODUCTION

In shape recognition, one needs a notion of distance between two bodies, to evaluate
their relative position or overlapping, to compare their geometric shapes...

One should think that the more interesting distance to use is the euclidean distance, but,
in the space of compact sets, it does not yield a distance. Thus, specific metrics have been
defined adapted to different kinds of problems : The Hausdorff distance which can estimate, for
example, the relative position of two shapes ; or the Asplund distance which can gauge one
shape with regard to the other.

Based on these ideas, new metrics are defined here, one being based on the Hausdorff
distance defined with other structuring elements than the usual ones in order to get an
anisotropic operation ; the others more adapted to the space of classes of shapes equivalent up
to a translation.

PRELIMINARIES

Let K be the set of planar bodies (compact sets with a non empty interior) in the
euclidean plane IR2, % be the set of bodies star-shaped with respect to interior points. We
define %!as being the spaces of classes of elements of % consisting of bodies equivalent
under translations.

The Hausdorff distance (dg) in K can be defined in two ways :

DV E,Le %2 du(K,L) = Max{ Sup d(x, L), Sup d(y, K)} ¢))

xeK yeL
where d is the euclidean distance in IR2.

2) morphological definition
V (K,L)e X2 dg(K,L) =Inf(re IR*; KOrBo>LandL®rB > K) (2)
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where B is the unit disk of IR? and @ the Minkowski addition defined, for A and C two
compact sets of IR2, by A@C=(a+c;ae A, ce C)

Sup d(k, L)
1 ek

X L K : triangle E]

L : square of
unit length side

dy(K, L) -2

1 1

Figure 1 . Example of the Hausdorff distance between a square of unit
length side and a triangle.

The space (% dy) is known to be a complete metric space ; with this topology, @ is a
continuous mapping from %2 to % (Matheron, 1975).

By using a disk as structuring element, we obtain an isotropic operation. In order to take
into account prominent directions, we need to generalize the Hausdorff distance by using non
circular and not necessarily symmetric structuring elements.

THE GENERALIZED HAUSDORFF DISTANCE

Let B be a fixed convex body in IR2. Let us define for K and L two bodies in IR2 :
dGgH(K,L) =Inf {re IR*; K&rBoLand LOrB>K } 3)

Notes: dgH (K, L) € IR* U {+w} = IR +
We can notice that the distance between two bodies will be different if the
position of the origine in the structuring element is moved (cf fig. 2).

a b)
Figure 2 . Example of the distance between two bodies R1 and R2 with a triangular
structuring element. If its origine is choosen at a vertex (a), the generalized Hausdorff
distance will be infinite (no dilation of R2 will contain R1 : dGg(R1, Rp) = Max( A, +o0)).
When the origin is taken in the triangular structuring element (b), the distance is then finite
(dgH(R1, Rp) = Max(r, r')).

PROPOSITION 1 : The mapping dgp is a distance in X.
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Proof :
a) By definition dgg (K, L) 2 0 and dgg (K, L)=dgu (L, K)
b)dgg K, L)=0=Vr>0 K&rBoL and L®rBoK

By continuity of the operation @ and of the function B — B for the dg topology, it implies ;

lim K®&rB=Kand lim L&rB=L
—0 —0

So dga K, L)=0& KoLandLoDK & K=1.
¢) Let us prove now the triangular inequality :
Let K, L, M be three bodies in X,
We set dgy (K, L) =19 dga (L, M) =1» doa (K,M)=r3  whererje IR +
We must prove thatr3 <1 +19 *)
- this inequality is obvious if r1 or r7 is infinite
- if 1] and ry are finite :
From (K®r11B>Land L& B> K) and (L&®rBoMand M® 1, Bo L) we get that:
KérBy®rpBoM and (M®rB)®r BoK
Associativity of @ and convexity of B (Matheron 1975) give :
K® (r;j +r) Bo M and M® (r1 +12) B o K which proves (¥). o

Without the convexity hypothesis about the structuring element B, dgy is no more a
distance.

The generalized Hausdorff distance have been used for a long time : effectively, until
now the computation of the Hausdorff distance on a grid needs to approximate the ball by a
square or an hexagonal structuring element. We have shown here that the use of such
structuring elements also leads to a distance.

THE RADIAL DISTANCE

Another extension of the Hausdorff distance can be defined without a structuring
element, the dilation being replaced by another kind of shape transformation. This
transformation, called "radial dilation", will be defined in the space of star-shaped bodies using
radial functions.

We will denote by St(K) the set of interior points with respect to which K is star-shaped. For K
€ Kand w € St(K), the distance of  to the edge of K in a direction 0 is defined with no
ambiguity. This distance pg(w, ) is the value of the radial function of K measured with

respect to  in the direction 6 (0 e [0, 2x]). It will simply be denoted pg(0) or pg(K) when
there is no ambiguity.

K is fully characterized, up to a translation, by the knowledge of px(w,0), when 6
describes [0, 27t]. For h € IR+*, and for © e St(K), we define the "h-radial dilation of K with

respect to " by its radial function :
PDea(K)(@ 6) = px(®, 6)+h 0 € [0, 2n] )

This shape clearly belongs to %, and will be denoted D,n(K), or D(K) when there is no
ambiguity.
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PROPOSITION 2 : The radial dilated set of K of length h ,with respect to any point @
is contained in the "classical" dilation of K by a disk of radius h.

VKe X Voe s(K) K @ hB D DgnX) (5)

proof : (Labouré, 1987)
It suffices to remark that : V o € St(K), V 0 € [0, 2x] po(K @ hB, ) 2 pp(K, ) +h ¢

jeS)
K ® hB

— —
a=py(K) b=py (K®hB)
Figure 3 . Radial dilation of a square and a triangle, and illustration of (5).
The radial distance between K and L is defined, by analogy with the Hausdorff
distance.
If we St((K) N St(L) let dr be defined by :
dr(X,L) = Inf{h>0, Dp(K) o L and Dy(L) o K} ©6)

PROPOSITION 3 : The mapping dR is a distance on Xj.

proof: It can be expressed by dr(K, L) = llpk -pLlle = Suplpe(XK) -peL)l, 8 € [0, 27]} ¢

PROPOSITION 4 : The mappings dy and dR satisfy the following inequality:
V (K, L)e KZ du(K, L) s dr(K, L) Q)

These distances are not equal in general.
proof : (Labouré, 1987) 3

In order to get a definition which would be independent of the relative position of K and
L, let us generalize this distance to the case where S{(K) N St(L) = @.
The points ® € St(K) and ®' € St(L) being given, let u be the vector ®'e and let L, be the

translated set L + u. Thus @ € S((K) N St(Ly). We then define oy the radial distance between K
and L by :

(K, L) = Infy e qx) 1IPK - PLullo @®)
o' e St(L)

This expression can be generalized to all star-shaped bodies. It is independent of the relative
positions of K, L, w and o',

PROPOSITION 5 : The mapping 0, is a distance on %t
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proof :
a) (K, L) is clearly symmetric and positive.
b) We have shown (proposition 2) that V @ SIK) N sty du(K, Ly) <llpx - pLulle
Thus Infoe q@) dH(K,Lw) < Infye gk) K- prallee = ar(K, L)
o' e SL) 'e Si(L)
We deduce that (K, L) = 0 = Infg, o dg(K, Ly) =0
Since the set of vectors u is bounded and since K and L, are compacts sets, we deduce that K =

L up to a translation.
¢) We just need now to verify the triangular inequality :

Let w € s1(K), o' e St(L) and " St(M)
lIp(X, ) - p(L, ®')lloo < lIp(K, @) - p(M, ®")llo, + llp(M, ®") - p(L, 0")lloo
Taking lower bounds for ® S(K), o' e st(L) and finally o"e St(M), yields the result.

The radial dilation can be used in industrial applications:

-On an assembly line, for example, a way to throw away objects recognized as "bad"
objects is to use a piston whose movement is given by the rotation of an ellipse around the
origine. The position of the extremity of the piston from O is defined to be the radial function of
the radial dilated of the ellipse (Fig. 4 a).

-In a control of circularity, the use of the Hausdorff metric allows to quantify the width
of the hole and the radial distance allows to quantify its depth (Fig. 4 b).

P©)P(O) by ML
[ 1 ]dR (K, L)
O L

O x

%/

Figure 4 . 4a: movement of a piston given by the rotation of an ellipse.
4b : measures realized by the Hausdorff and the radial distance.

THE "RADIAL GAUGE"

In connexion with gauge notion, we define the "radial gauge" for two sets K, Ky
assumed to be star-shaped with respect to an interior point O and lying in the set %, by :

r(K1, K2) = Max { Sup{Pe&D
po(

po(K2)
»0 € [0, 211}, Sup{——=% 0 e [0, 2n]} } )
K2) po(Ky1)
PROPOSITION 6 : The function dg: Ksx %X — IR*

K1, K2) - Inr(Ky, Kp)
is a distance on %G.
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Note : Despite appearances, this "gauge distance" is different from Asplund distance

(Asplund, 1960). do(K, L) = dA(K, L) = Log Inf {g; K c oL and BL c K}

CONCLUSION

In this paper,we have generalized the Hausdorff distance to non symmetrical structuring
elements and we have created new distances based on the radial function. The problems of the
discretization and also the problems directly linked to the expressions of these metrics, lead to
the fact that the implementation is not easy, and it has to be improved. Moreover, these are
specific metrics, and we still have to define their field of applications.
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