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ABSTRACT

Image cytometry (ICM) makes it possible to measure DNA content of cancer cell nuclei
in a fully automatic and reproducible way. DNAICM relies on a three step procedure :
segmentation of all the nuclei collected in a series of images, followed by computation of
integrated optical density (IOD) of DNA specific stain and morphometric parameters, then on
elimination of unwanted elements, thanks to a selective sorting of parameters. Quality of
sorting is closely linked to the accuracy of the computed parameters, these later depending of
course on the quality of segmentation. The present paper studies the impact of the
segmentation step on the number of nuclei to be measured, on their size and their IOD. The
study reveals that the choice of one segmentation method over another may involve a great
disparity in measurements, e.g. in the percentage of aneuploid cells and in the size of the
proliferating cell compartment.

INTRODUCTION

To the pathologist the estimation of nuclear DNA content offers a tool for evaluating
the potential aggressiveness of tumors. This measurement can be based on image analysis which
represents, thanks to its possibilities of cell sorting, an attractive alternative to the more widely
used flow cytometry (FCM) (Marchevsky et al., 1994). We underlined that ICM is best suitable
to clinical practice. This automation should lead to precise and reproducible measurement of
IOD of the DNA stained nuclei, and reliable sorting out of unwanted elements (debris,
aggregates, normal inflammatory and stromal cell nuclei). The recent ESACP consensus report
has reviewed the main causes of error in DNA ICM, but the potential errors caused by a bad
segmentation have only been briefly mentioned (Bocking et al., 1995). However, the quality of
the segmentation process has probably a significant impact on I0D computation as well as on
computation of the morphological parameters used for automated cell sorting. To the best of
our knowledge, no work has been published on this subject. The objective of the present study
is thus to evaluate the repercussion of the segmentation step, by testing some procedures
belonging to the main families of algorithms, and to provide a methodology for choosing the
best one for the goals of the analysis.
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MATERIALS

The acquisition system is based on an Olympus BH2 microscope coupled to a mono
CCD camera (Sony) connected to a PC running under UNIX operating system. The PC
includes a black and white frame grabber (Matrox PIP 1024) delivering images of size 512x512
in 256 gray levels. With an objective X20 (numerical aperture 0,70) and a X6.25 projective unit
(leading to a final magnification X 125), each pixel in an image corresponds to a surface of 0.11
um’. For the present study, a series of 388 images of dissociated cell nuclei, stained according
to Feulgen and Rossenbeck method (Feulgen et al., 1924), has been acquired and backed up on
hard disc. This series is made up of 193 images acquired from normal breast tissue and
195 images acquired from a case of high grade breast cancer. In the following parts of this
paper these two series will be respectively designed as “sample 0” and “sample 1”. A manual
counting has revealed the presence of 6418 objects belonging to all the categories of intact
nuclei and aggregates and debris.

The image processing system is structured around a IBM RISC 6000/AIX workstation.
DRACCAR® software, developed in our laboratory (Masson et al., 1992), allows to segment
the images to isolate the relevant objects, then to measure, sort and analyze them, in order to
build a DNA ploidy histogram from which the unwanted cellular categories can be removed
(nuclei of inflammatory and stromal cells, debris, aggregates...).

METHODS

A. Generalities and Principles

There is no universal technique of segmentation up to now but in fact several operators
and methods which are traditionally classified in four families :

F1 : methods based on grey level histogram analysis (thresholding)
F2 : methods based on object contour detection

F3 : methods based on region growing

F4 : hybrid methods combining operators of the three first families.

The use of operators from only one family is generally sufficient on simple images (with
limited information) but in the biomedical field, where images are generally more complex, it is
more often necessary to chain operators belonging to several families, in order to reach an
acceptable segmentation quality. The choice of methods must be both guided by an accurate
analysis of image characteristics and by degree of precision needed (object counting for
example will require a lower degree of accuracy than surface measurement). We will briefly
review the principles and properties of the four families of methods.

F1 : methods based on grey level histogram analysis (thresholding)

When a class of objects is characterized by a specific distribution of grey levels, it may
be highlighted through application of characteristic thresholds. Automatic detection can then
apply several methods (Sahoo et al., 1988). The operators of this family have the advantages of

running fast and being easy to implement, but they are not stable enough from one image to
another.

F2 : methods based on object contour detection
The contour-based methods rely on the detection and localization of object borders by
means of more or less elaborated differential operators, which are associated to a regularization
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process (required by the discretization of images). Unfortunately, these methods often lead to
unclosed contours when they are applied to strongly textured objects or slightly contrasted
images.

F3 : methods based on region growing

These methods try to isolate some regions respecting one or more homogeneity criteria.
Regions are extracted either by successive fusion of the original image until they all respect the
defined criteria (ascending analysis) or by progressive growing of connected pixels while the
criteria are observed (descending analysis). In the last case, the region growing process can be
iterated from single points (designed as « seeds ») or from greater areas provided by another
segmentation step.

F4 : hybrid methods combining operators of the three first families

These segmentation methods combine both « contour » and « region » features in the
same process. One may mention the watershed algorithm in mathematical morphology
(Beucher, 1992) or the active contour methods (Kass et al., 1988). The residual analysis is a
particular technique which can be included in this family. It consists in processing two
smoothings of an image (a strong one and a weak one) then to calculate the difference between
the two results. This operation is quite similar to the computation of a Laplacien filter
(differential operator). By thresholding only the positive values of the result one then forms
some homogeneous regions.

B. Segmentation methods tested

Nine segmentation methods covering the four families above-mentioned have been tested
in this study (cf. Table 1 for details). Method 0 belongs to the contour-based family (F2).
Methods 1 and 2 combine a residual analysis (F4) and a thresholding (F1). Methods 3 to 6 are
hybrid techniques (F4) making use of region growing (F3) and thresholding (F1) procedures
while methods 7 and 8 are only related to histogram analysis (F1).

MO0 : This is the method implemented in DRACCAR® software. It relies on the Canny-Deriche
contour detection operator (Deriche, 1987) which includes a regularization step based on
recursive exponential filtering. Once the main contours are extracted (those having the
greatest values in the image of frontiers), a frontier closing automaton is applied to form
the objects.

M1 : This method consists in finding the minimum between two images, one provided by the
thresholding technique of interclass variance maximization (IVM), and one provided by a
residual analysis.

M2 : This method consists in finding the minimum between two images, one provided by the -
thresholding technique of entropy minimization (EM), and one provided by a residual
analysis. _

M3 : This method first consists in applying a IVM thresholding in order to extract the
background region. The first pixel of the background (starting in the upper left corner)
stands for the seed from which a region growing process is realized. The homogeneity
criterion used to control the growing process is that the absolute difference between the
grey level value of a pixel and the mean grey level value of the adjacent region has to be
lower than 40. '

M4 : Same method than the previous one but with EM thresholding.
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M5 : This method first consists in applying a IVM thresholding in order to extract the
background region. The same steps as in the T3 technique are then applied but the
growing process is directly conducted from the background region (and not from a single
point).

Table 1 : General principles of the nine tested segmentation methods (a “X” indicates the

type of performed operations).

Method number

ol1]2]3]4]5]6]7]S3

F1 [Histogram Varlance
Entropy
F2 |Contour Canny-Deriche

Seed = 1 point
Seed = background
F4 |Hybrid Residual analysis X X |

General principles of methods

F3 |Region growing

M6 : Same method as the previous one but with EM thresholding.

M7 : This method consists in a classic IVM thresholding followed by very simple cleaning
procedures by means of morphological openings (size 2).

M$E : Same method as the previous one but with EM thresholding.

C. Methodology of comparison

All the objects lying on the 388 images have been manually checked in Corel
Photopaint 6° by writing on the overlay. This action provides the first series of binary images
standing for the reference. A specific software, developed in C for UNIX operating system, has
been used to compare the results of all the segmentation methods (expressed as a second series
of binary images) to the manual counting. This software allows to create, for each segmentation
method, a third series of binary images containing only the common objects. It then computes,
by comparing the three series, the number of omitted objects and the number of false objects.
The aggregates covering several manual checks are counted only once.

In a first time, the numerical evaluation has been conducted on the primary population,
that means without any sorting of unwanted cells such as stromal or inflammatory cells and
without elimination of debris and aggregates. Object counting has been achieved on the
388 images. The best fitted automated method will present the higher percentage of common
objects and the lower percentages of false and omitted objects. Quality segmentation in term of
object number may be estimated thanks to the following criterion :

O:=|100% - % Common obj. | + % Omitted obj. + % False obj.

On the primary population, the surface modal value as well as the surface minimum and
maximum values have been estimated too. The observed variations, for any value V, are
expressed as a relative difference according to the formula:

The mean and standard deviation (SD) of DNA content, as well as the mode of the
diploid peak of the reference sample (sample 0) and the mode of the aneuploid peak of the
cancer sample (sample 1) have been computed. The percentage of hypoploid elements (those
with a DNA content located before the diploid peak, normally corresponding to small nuclear
debris) as well as the percentage of cells having a DNA content higher than 5c are retained as
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parameters allowing to estimate the segmentation quality. The observed variations are also
expressed in the form of relative differences.

Automatic classification of segmented elements has been completed by DRACCAR®
software by means of a multi-parametric analysis (with 38 parameters) and by reference to a
learning base (Herlin et al., 1997). All the evaluations presented below are only related to the
epithelial compartment. Quality of any segmentation method may then be estimated by
comparing the automatic object sorting to a visual sorting by an expert. A numerical parameter
O, expressing the segmentation quality before automatic sorting, can be computed according to
the following formula:

Qt = ’Nb Ecuuta _Nb EC

man ref

with  Nb Ecay,  =number of epithelial cells automatically found
Nb Ecpanrer = number of epithelial cells of the manual reference

The best segmentation method should give the lowest O

DNA ploidy measurement accuracy can be estimated by computing the coefficient of
variation (CV) of the GO-G1 diploid peak (sample 0) and the aneuploid peak (sample 1). This
has been realized thanks to the DNA data analyzer software McycleAv® (Phoenix Flow
System). A good segmentation method must generate thin peaks (so with low CV).

Finally, the percentage of aneuploid cells in the tumor (percentage of cells in the GO-G1
aneuploid peak and percentage of cells in the aneuploid cycle) and the proliferating
compartment (percentage of cells located after the aneuploid peak) have been computed by a
specific data processing software embedded in DRACCAR®. This software makes Gaussian fits
(no more than 3) in order to find on the ploidy histogram the GO-G1 population, then tries to
estimate the number of elements located after the raw aneuploid peak and after the corrected
aneuploid peak (correction yielding to count for 100% the aneuploid cycle). Relative
differences for all these parameters are also indicated. The last parameter extracted from the
ploidy histogram is the Auer typing which offers the advantage of being a combination of DNA
aneuploid measurements and proliferation measurements.

RESULTS

Analysis of raw data : object counting

The number of found objects, common objects, omitted objects as well as the number of
false objects returned by the nine segmentation methods (by reference to the manual check of
6418 elements) are presented in the Table 2 and visualized on the histogram of Figure 1.

Table 2 : Object counting Table 3 : Segmentation quality
Tech. | Found |Common | Omitted False Tech. Qs
objects objects objects objects

0 80.71% 74.81% 25.19% 5.91% 2 35,96%
1 84.82% 82.42% 17.84% 2.40% 4 37,16%
2 94.16% 85.95% 13.70% 8.21% 5 37,43%
3 87.25% 81.61% 18.00% 5.64% 6 37,43%
4 87.10% 83.03% 16.13% 4.07% 1 37,82%
5 85.31% | 82.67% | 17.47% 2.63% 3 42,02%
6 85.35% | 82.69% | 17.45% 2.66% 0 56,29%
7 123.84% | 84.59% | 16.92% | 39.25% 7 71,58%
8 272.41% | 87.99% 11.05% | 184.42% 8 207,48%
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OBJECT COUNTING
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Figure 1 : Graphical representation of the object counting. The 100% line is the manual
reference.

In the context of this study, the best segmentation method (lowest O;) is method
number 2 which corresponds to a residual analysis combined with thresholding by entropy
minimization (see Table 3 for methods sorted according to Q;). However, the performances of
techniques 1 to 6 are very close.

Analysis of raw data : object surface

The modal value as well as the minimum and maximum values of segmented object
surface (expressed in pixels) are presented on Table 4 for two samples. The significant relative
differences are computed.

Table 4 : Analysis of object surface provided by the nine segmentation methods.

D,

Segmentation methods
max

0 1 2 3 4 5 6 7 8
Mode | 484 | 567 | 542 || 545 | 545 || 550 | 515 | 550 89 1537%
SO Min 42 26 26 39 39 34 34 34 45
Max 2105 | 2576 | 2582 | 3893 | 3893 | 3435 | 3435 || 3435 | 4460 1 111%
Mode | 142 || 216 | 216 | 174 | 193 || 146 | 146 | 129 | 220 | 70%
S1 Min 47 43 43 44 97 49 49 64 55

Max 2361 || 4327 | 4327 || 4361 | 9668 | 4860 | 4860 | 6446 | 5511 | 309%

There are large relative differences (D,) for the modal surface values, ranging from
537% (sample 0) to 70% (sample 1). By removing the two segmentation methods based on
classical thresholding (techniques 7 and 8) and showing the greatest variation, the relative
differences fall to 17% and 52%, respectively. Differences observed for the minimum and
maximum surface values are statistically significant for the last one; they reach 111% and
309%.
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Analysis of raw data : DNA content abnormalities

Table 5 presents some measurements extracted from the ploidy histogram. It contains
the mean and standard deviation (SD) of the DNA content distribution, the two modes of the
sample 0 DNA diploid peak and sample 1 DNA aneuploid peak, the percentage of hypoploid
elements and the percentage of objects whose DNA content is higher than 5c.

Table S : Analysis of object DNA content provided by the nine segmentation methods.

D,

Segmentation methods
max

0o T 1 T 23T 457677 Ts
Mean | 1.58 | 1.65 | 1.64 | 1.71 [ 1.72 | 173 | 1.73 | 1.74 | 1.55 | 12%
SD 0.7 | 0.81 [ 0.82 | 0.82 | 0.81 | 0.77 | 0.77 | 0.77 | 0.95 | 35%
SO [Mode | 19 [ 19 [ 19 19 [ 19 [ 19 | 19 | 19 [ 19 |l
%hypo | 32.8 | 29.4 | 30.1 | 276 | 27 | 249 | 249 | 25 | 352 | 41%
%>5c | 009 ] 032 ] 031]035]034] 032032032 ] 039 [333%
Mean | 1.72 | 191 | 1.84 | 1.90 | 1.96 | 2.04 | 2.04 | 2.02 | 1.78 | 18%
SD 124 | 157 [ 157 | 1.54 [ 1.73 | 1.56 | 1.56 | 1.62 | 1.53 | 39%
S1 |Mode 3 3 3 3 3 3 3 3 [ 31
%hypo | 224 | 227 [ 23.4 | 21.7 [ 208 | 17.4 | 172 | 19 | 23.7 | 37%
%>5c | 1.86 | 3.11 | 3.08 | 343 | 3.59 | 3.81 | 3.78 | 3.59 | 2.92 | 104%

It may be observed that there are some variations for all the presented parameters
except for modal values of diploid and aneuploid peaks which remain constant. Relative
differences of mean DNA content are important since they get to 12% and 18% for the two
samples. One may also observe that the two automatic thresholding techniques yield to
extreme values, whereas these values remain stable inside a same family of methods (see for
example results of method 1 and 2).

The relative differences of the standard deviation are twice more important since they
reach respectively 35% and 39%.

The main disparities apply to percentages of DNA hypoploid elements (41% and 37%)
and percentages of objects whose DNA content is higher than 5c (333% and 104%). The
lowest results concerning objects beyond Sc are encountered with method 0 which is based on
contour detection and closing.

Analysis of sorted populations : compartment of epithelial cells

DRACCAR® software allows classification of segmented objects in several categories
by reference to its learning base. Epithelial cells of normal tissue are then distinguished
according to their size or texture. Epithelial cells with abnormal morphology in tumor tissue
are also discriminated from their size aberration, texture aberration or both of them. The other
sorting categories cover stromal cells, lymphocytes, plasmocytes, unidentified non epithelial
cells and debris. These last categories have to be removed before displaying the final ploidy
histogram.

Table 6 presents the number of epithelial elements automatically found. The last column
corresponds to a manual sorting conducted by an expert on the objects provided by
segmentation method 0 ; it stands for the current reference.
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Table 6 : Sorting of epithelial cells in the two samples.

Segmentation method
ol 1] 210131 4] 5] 61 7] 8 |mn
Number of 1071 | 1085 | 1089 | 1082 | 1102 | 829 | 836 | 794 | 636 | 1018
epithelial cells
80 | Total number | 70l 7559 | 2552 | 2200 | 2319 | 2184 | 2184 | 2196 | 2532 | 2276
of elements
Sl
C/;lfsplthehal 47% | 43% | 43% | 47% | 47% | 38% | 38% | 36% | 25% | 44%
Ou 53 | 67 | 71 | 64 | 84 | 189 | 182 | 224 | 382
Number of 851 | 955 | 959 || 804 | 870 | 686 | 689 | 553 | 801 | 735
epithelial cells
ST \Total number | 7/, 13311 | 3444 2977 | 3008 | 2914 | 2910 | 2866 | 3114 | 2744
of elements
o, cemen
é;llef“heh"‘l 31% | 29% | 28% || 27% | 29% || 24% | 24% | 19% | 26% | 27%
Ou 116 | 220 | 224 | 69 | 135 | 49 | 46 | 182 | 66
O Qwt+Ou 169 | 287 | 295 | 133 | 219 | 238 | 228 | 406 | 448

One can observe from Table 6 that percentages of recognized epithelial cells are not the
same for all segmentation methods, the range spanning 22% of the scale in the two samples.
Quality factor O is very large for the thresholding techniques (n°7 and 8). Surprisingly, the
minimal value of O, is encountered with method n°3 and not n°0 whereas the learning base is
constructed from results provided by this last method.

Analysis of sorted populations : CV of diploid and aneuploid peaks

Table 7 presents the CV of the diploid and aneuploid peaks evaluated in McycleAv®
(respectively in samples O and 1). The mean is indicated on the last line. The smaller mean
value indicates more accurate measurement of DNA content. Except for method 0 which
generates a great CV, all the others provide close results.

Analysis of sorted populations : DNA content abnormalities in sample 1

We are only interested here by DNA content anomalies (sample 1). The measured
parameters are presented in Table 8. One can observe some large relative differences in these
results, especially for percentages of cells located after the aneuploid peak (with or without
correction). A direct effect is that method 2 generates a different Auer typing than all the other
methods. Indeed, the Auer typing is deduced from the third parameter by testing if it is lower
than 5% or not.

Table 7 : Coefficients of variation (CV) of diploid and aneuploid peaks.

Segmentation method
0 1 2 3 4 5 6 7 8
CV of G0-G1 diploid peak 4213213233(33[34(35]32]3.1
CV of G1 aneuploid peak 40(36|38|36[36(38[39(39]3.7
Mean CV 41|34]35|345|345]3.6|3.7[3.55|34
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Table 8 : DNA content anomalies of epithelial cells (sample 1).

Segmentation methods D,
0 1 2 3 4 5 6 7 8
% in aneuploid peak 65,81 66,0 [ 76,0 | 58,9 | 62,5 70,2 | 70,4 | 74,0 | 62,6 | 29%
% > aneuploid peak 7,7 168 | 38]56]60]69169]|100]| 5,1 [163%
% > corrected aneuploid peak | 10,5 9,4 | 4,8 | 8,7 87189 |89 11,9 7,5 [148%
% in aneuploid cycle 73,5) 72,8 179,81 64,5|68,5[77,1]|77,3]84,0]67,7|30%
Auer typing vy maAlv ] w v [ v [l

DISCUSSION

In order to synthesize the presented results, one can say that considerable differences
are observed, according to the segmentation method used, on three types of parameters
computed on objects : number, surface and DNA content. In fact, the final measure we are
interested in is the DNA ploidy histogram which relies on a good quality of cell sorting in order
to dismiss unwanted elements. But the three types of parameters all have an impact more or
less significant on both ploidy histogram and sorting results.

For example, the number of segmented objects essentially influences the shape of
DNA ploidy histogram. So, the loss of biggest elements decreases the detection sensitivity of
rare elements, those which are the more pertinent since they sign a starting aneuploidy or
proliferation. On the other hand, the gain of small objects inflates the left part of ploidy
histogram and also yields to decreasing the detection sensitivity. The gain of objects, whatever
their size, has also an impact on sorting by involving a larger useless time processing.

Surface estimation accuracy influences IOD measurements and, by the way, location of
segmented objects in DNA ploidy histogram. Indeed, IOD is obtained from the following
formula :

JOD = Z I (]i(xd/)) L s
= 08| 7, | Jdixy) :incident light in (x,)
(x,y)enucleus I.‘ (x’ y)
Iix,y) : transmitted light in (x,y),

the ratio %’y; being equal to 1 for points belonging to the background, thus having a null

t >
logarithm value. Consequently, an object segmented outside its true limits will have its IOD
nearly unchanged, whereas the same object segmented inside its limits will have its IOD largely
decreased. Above all, surface estimation accuracy influences the sorting process since, among
the 38 computed parameters, surface appears as one of the most discriminating parameter.

At last, accuracy of DNA content measurement, characterized by low CV of diploid
and aneuploid peaks, determines the ability to discriminate near DNA diploid populations
(those which are close to 2¢ value).

Considering all these remarks, a determined segmentation method can be chosen after
analyzing its performances. The results provided by the nine tested segmentation methods are
discussed below.

The contour-based method (n°0) generates the most reliable frontiers but is unable to
extract all the objects (mainly the biggest ones) due to the relative complexity to efficiently
tune the contour closing automaton. A bias is then produced on DNA ploidy histogram. In
fact, this method produces the smallest number of objects (Table 2).

The two classic thresholding methods (n°7 and 8) produce the greatest number of
objects, but many of them are false objects (Table 2). These false objects have then to be
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distinguished from others by specific sorting algorithms that are never easy to tune. Our study
reveals that two thresholding methods (variance and entropy) render different results (for
object counting as well as DNA content). This is mainly due to the fact that methods based on
histogram analysis do not give any control about frontier localization.

Methods making use of region growing processes, either from seeds or from areas
(methods 3 to 6), are inclined to return object frontiers outside the true limits, thus leading to
an overestimate of object surface. This has a direct impact on the later sorting. However, these
4 methods provide homogeneous and good results (a correct object counting without
generating too many false objects).

Close to methods 3 to 6, methods 1 and 2 show the same properties but provide better
results concerning object counting. Among them, method 2 (minimum between EM
thresholding and residual analysis) appears as the best choice for our images thanks to its low
O; parameter (cf. Table 2). This method combines EM thresholding with contour information
via the residual analysis. This contour information explains the good results.

Methods 7 and 8, based on classic thresholding, provide the poorest results in nearly all
domains and should be avoided for this type of image.

It may be noted that no manual reference is available concerning DNA content
estimation. Indeed, a reference should be obtained from interactive outlining of nuclei but this
would not be reliable enough (lack of precision and too much subjectivity). By analyzing
DNA ploidy histograms through parameters of DNA aneuploid cycle one can note differences
from a segmentation method to another. The only reliable indication on segmentation quality is
the CV of peaks computed from standard populations.

Moreover, the presented results are strictly reliable only for the raw population, before
sorting of cellular categories, since the sorting process used in this paper relies on a learning
base constructed from results of method O (this last method being implemented in
DRACCAR®). Nevertheless, it should be observed that when input values are changed, the
automatic sorting process provides very different results (Table 6).

CONCLUSION

This study has shown that in the framework of image cytometry, choosing one
automatic segmentation method rather than another yields to great disparities in the object
number, and in measurements of object surface or DNA content. These disparities then cause
variations in automatic cellular classification and in interpreting aneuploid cycle of epithelial
cells from the DNA ploidy histogram. Our study reveals that analysis of cytological images, at
first sight quite simple, needs sophisticated segmentation methods combining properties of
several families of operators. Indeed, using operators from only one family (methods 0, 7 and
8) provide poor results which still can be largely improved. On the other hand, one has to note
that our study is not exhaustive and many other attractive methods can be tested (for example
watershed, active contours...).

Finally, we suggest that the method adapted for interpreting images should be tested on
a standard population. Once a method is chosen and validated, a learning base must be created
from its resulting segmented objects.
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