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ABSTRACT

This paper surveys main results of Ny-stereology for systems of convex particles
with comments to their practical applications in metallography.
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INTRODUCTION

The subject of many microscopical studies are structures consisting of dispersed
particles which are distributed uniformly in material space. The particle density Ny,
which gives the average number of particles per unit volume, is a basic parameter of
such structures. When Ny is known one can calculate, for example, average values
of many global structural parameters per single particle, which may be of theoretical
or practical significance.

In metallography N is usually measured by stereological methods, i.e., by indirect
procedures based on measurements made on representative sections of three-
dimensional structure being investigated. Sections are generated with known
geometrical objects, so-called test objects, which are positioned at random in
relation to the structure. Planes are the most popular test objects.

Probably, the beginning of Ny-stereology is connected with the appearance of some
simple formulae which were developed for systems of spheres in the early 1930s by
Tammann and Scheil (Saltykov, 1974). The following review is based on the
properties of sections. Two types of sections will be considered:
(i) simple sections induced by a test object in the form of a finite system of
separate points, a line, a plane or a three dimensional slice, and
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(ii.)  parallel sections formed by a pair or a series of parallel simple sections.
Throughout the review it is assumed that the particles are convex. Consequently,
Ny-stereology for simple sections is closely related to Cauchy's formulae, which are
well known in integral geometry (Santal6, 1976). Ny-stereology for parallel
sections, which was developed in the framework of the random set model, are
presented only by showing its main results (Kraj, 1967, Wiencek, 1996).
The aim of this article is to present stereological equations in which Ny appears
explicitly, so-called Nv formulae; it is not intended to give a complete review. Only
such problems were taken into consideration
(i) which have a stable position both in stereology and quantitative
metallography, i.e. which appear in such basic handbooks as in Underwood
(1970), Saltykov (1974), Weibel (1980), Saxl (1989), Ohser and Lorz
(1994), Rys (1995), Kurzydtowski and Ralph (1995), and Stoyan, Kendall
and Mecke (1995),
(ii) or which are recognized as original. (in the authors' opinion) or are results of
recent studies, published in this issue.

BASIC FORMULAE FOR PARTICLE STRUCTURES

Geometrically, a particle, X, will be treated as a convex body. Its volume V,
surface area S and total mean surface curvature M belong to the so-called convex
body functionals (Bodziony, 1965; Santalo, 1976; Stoyan et al., 1995).

Let D be the mean projection length of X onto a random line and F the mean
projection area of X onto a random plane. The Cauchy projection formulae (Santalo,
1976) are as follows:

S =4F 1)
and
M =27D @

The particle structure = is composed of non overlapping particles X; (i=1,2, ...),

which are distributed randomly in space R, forming a random set, a so-called germ-
grain model (Stoyan et al., 1995; Ohser and Lorz, 1994).

For dispersions analysed in metallography, it is typical that Vy < 10% and
Ny > 106mm-3, which means that the ratio of particle size (or size of the particle's
nearest neighbourhood) to sample size (~10 mm) is near zero. Consequently, an
unbounded and isometric (homogeneous and isotropic) random set is a realistic
model.

Besides Ny, the structure = is characterized additionally by some global
parameters, namely the densities of the particle functionals given above (i.e. the
average sum of particle functional per unit volume). These densities include volume
density Vv, surface area density Sy and total surface curvature density My. These
functional densities and Ny determine the mean global parameters of single
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particles, i.e., mean volume (V), mean surface area (S) and mean surface curvature
(M) which satisfy :

V)=N.'V, , 3)

(S)=N;'S, (4)
and

(MY=N."M, . (5)

Because of the additivity of particle functionals, analogues of the Cauchy formulae
are true also for the particle system X, for the pairs of the means ((S), <F)) and
({M) (D)), respectively. Then the Egs. (3) - (5) may by rewritten

=(V)N, , (©6)
S, =4(F)N, (7

and
M, =27(D)N, . (®)

Because Eqs. (6) - (8) contain the parameter Ny, they can be considered to be the
basis of Ny-stereology for simple sections.

STEREOLOGY FOR SIMPLE SECTIONS

The following simple test objects will be used: a system of separate points P, a
line G, a plane E and a slice T(t) of thickness t. The integer 1 will be assigned to a
point which is a non-empty mtersectlon of X with P. The intersection £ " P forms a
system of points in the space R”= P with point density Np. The parameters Vv and
Np satisfy Glagolev's formula (Saltykov, 1974)

Ve=Np . ©

A non-empty intersection of X and G is a segment ( chord ). The intersection E N G

forms a system of chords in the space R'= G with chord density Np. The parameters
Sv and Ny, satisfy Saltykov's formula (Saltykov, 1974)

S, =4N, . (10)

Finally, a non-empty intersection of X and E is a planar convex ﬁgure The
intersection E N E forms a system of convex planar particles in the space R'=E
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with particle density Na. The parameters My and N, satisfy Bodziony's formula
(1965)

M, =2zN, . 11

By means of Eqs. (6), (7), and (8), as well as Egs. (9), (10), and (11), one obtains the
following formulae for the parameter Ny:

N,=(P)"'N, , (12)
N, =(F)"'N, , (13)
N, =(D)"'N, (14)

By means of (12), (13), and (14), it is possible to obtain two further formulae. With
respect to (D) and (F), the structure = may be characterised by the factor i,

x, =(F){(D)* . (15)

In general, x; depends on particle shape and size. For equal spheres it is k> = n/4. For
regular particles of equal size (cube, cylinder, elipsoid, ...) k, belongs to the interval
[0.5 <x2< w/2] (Underwood, 1970). The first formula for the parameter Ny results
from Eqs. (13)-(15) (Underwood, 1970, Kurzydtowski and Ralph, 1995):

2
N, =, % , (16)

L

Next, the structure Z may also be characterised with respect to (D) and (V) by a
factor k3 given by

o =WD)" . (7

As with k», k3 depends on particle shape and size. For equal spheres it is k3 = n/6
and for regular particles of equal size there is the inequality 0.16 <k3< n/6
(Underwood, 1970). The second formula for the parameter Ny results from Egs. (9),
(12), (14), and (17):

Ny=k,—4 . (13)

It could be concluded that any information about «, and 3 in ( 16 ) and ( 18 )
( obtained by estimation, experience or mode 1 ) opens the way from sections to Ny.

A non-empty intersection of a particle X with a slice T(t) of thickness t is a
convex body ( a particle or a convex part of it ). Consequently, the intersection
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E N T(t) is a random set of convex bodies in the slice. The projection of & ~ T(t)
onto a plane E which is parallel to T(t) is a two-dimensional random structure
characterised by the projection density Na(t) (the average number of projected
particles per unit area). The parameters Ny, (D) and Nu(t) satisfy the formula of
Cahn and Nutting (1959)

_ MO
N =T (19)

Formula (14) can be considered as a particular case of (19), obtained for t—>0.
Furthemore, inserting (14) into ( 19 ) yields the following formula:

Nl’:IAl[NA(I‘)_NA] : (20)

The presented Eqs. (12)-(14), (16), and (18)-(20) are formulae for the parameter
Ny. Only in Eq.(20), Ny is the exclusive parameter of the = structure and as such it
may be useful for Np Ny-estimation. In the other formulae further 3D parameters
appear. In general, an estimation of the means (D), (F) and (V) (or k. and k3) from
measurements on sections is not possible. However, some results for non-spherical
particles of regular shape (cube, cylinder, ellipsoid, ... ) are given in Fullman (1953),
DeHoff and Rhines (1961), Underwood (1970), and Ohser and Nippe (1997).

If = is a system of spheres, it is possible to estimate the means (D), (F) and (V)
from measurements made on linear or planar sections. However, in the case of the
projection of E M T(t) onto E, only an approximate estimation of (D) is possible. In
Czyrska-Filemonowicz et al. (1998) one can find an example for Ny-estimation

based on equation (19) where (D) was estimated from measurements made on thin
foil TEM images.

Systems of spheres. Let D and d denote the diameters of sphere and circle section,
respectively. The well-known Bach formula (1967) for diameter moments says

(@) =1, (D*")(D)" for k=-1012,., (21)
where <dk> and (Dkﬂ) are diameter moments of order k and k+1 respectively and
s 1
IN—=+-
I Jr (2 2}
PP LB A
2 l“(f + IJ
2

For k = -1, Io= 7/2 results from (21) (Fullman, 1953)

for s=012,. . (22)
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@ﬂ:%@f : (23)

M;;m@ﬂ. (24)

Formula (24) enables unbiased Ny-estimation from profile diameter measurements
made on planar sections, unfortunately, with infinite variance (Watson, 1971). This
so-called Saltykov's method of inverse diameters is still popular in metallography
(Saltykow, 1974; Rys, 1995; Kurzydtowski and Ralph, 1995).

Let 1 be the chord length of & n G and f (1) the probability density of the chord
length. For a system of spheres the following relation exists:

(D7)’ :%[fﬂ’_)} , 25)

dl

For spheres, the mean projection area satisfies (F) = n/4 (Dz)i Consequently, from
(13) and (25) the following formula for Ny is obtained (Hilliard, 1968)

N, :—Z—NL [L(I)} . (26)
T dl |,

It should be noted that the instable estimation of f (1) makes formula (26) difficult to
be used in practice.

Equations (24) and (26) are true for every isometric system of spheres. However,
in practice often additional information about the particle structure, = is given. For
example, in metallography, the size distribution of particles or grains could be
known as an empirical result of previous measurements or of theoretical
considerations. In many practical situations, a sphere diameter distribution of log-
normal or gamma type can be used as a reasonable general model (DeHoff, 1965;
Saltykov, 1974; Moran, 1971). For dispersed carbides in steels it was shown (Ry$
and Wiencek, 1980) that the particle diameters follow the Weibull distribution with
probability density (Gajek and Katuszka, 1994).

f(D)=naD™ exp(—aD”) for n=1,a>0 . 27

In such a case Ny-estimation can be based on formulae (16) and ( 18 ) for which x>
and «3 are given by
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T
Ky = 2_ 1 (28)
n
and
n’T (3)
pa
K=o (29)
n
respectively.

In Stoyan and Wiencek (1991) formula (18) is given for k3= 0.857 (which was
calculated from (29) for n = 3) in connection with the Stienen model, a model for
the dispersion of Fe;C particles in steel.

A special case of the Weibull distribution (27) is the Rayleigh distribution, with
n=2. Here, k; and «;3 are both equal to 1. Examples of Ny-estimation by means of
formulae (16) and (18) for Fe;C dispersions in steel which follow the Rayleigh
distribution are given in Ry$ and Wiencek (1980) and Wiencek and Rys (1998). It
should by noted that when the carbide volume fraction is known (as a result of
chemical analysis or earlier measurements), Ny-estimation by (18) and (9) can be
reduced to the estimation ofprofile density Na, which can be carried out by simple
counting measurement made on planar sections alone (Wiencek and Rys, 1998).

Systems of convex polyhedrons. A system of space filling convex polyhedrons
can be used as a model for the grain structure of polycrystalline metals. In
metallography the model of equal Kelvin polyhedrons is often used (Underwood,
1970; Ry$, 1995). In this case Ny-estimation can be based on formula (18) with
Np = Vv =1 and «3= 0.419. However, the Poisson-Voronoi model may be more
realistic (Stoyan et al. , 1995; Ohser and Lorz, 1994). Here k3= 0.323.

It was shown empirically that when grains of polycrystalline Fe. (as well as some
other metals) were approximated by spheres (because Vy = 1 the spheres must
overlap), the sphere diameter distribution follows the Rayleigh one (Eq. (27) for
n=2) (Hu, 1974 ). In such a case Ny-estimation can be based on formula ( 18 ) with
Np=Vy=1and ;=1 (formula (29) with n = 2), which corresponds to a formula
given by Tammann (Saltykow, 1974).

STEREOLOGY FOR PAIRS OF PARALLEL SECTIONS

In the following, pairs of parallel test objects will be taken into consideration :
pairs of points P(A), pairs of lines G(X), and pairs of planes E()), which are all
separated by distance A. A pair of parallel test objects corresponds to a pair of
parallel sections through the particle structure =.
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An intersection of a particle X with a pair of parallel objects may form: a pair of
points, a pair of chords or a pair of plane figures. For given A, a pair of parallel
sections is characterized by the density of pairs of intersections, while for variable A,
a pair of parallel sections which depends on A, is characterized by the so-called
intersection pair density function (IPDF). Particular IPDF's are: the point pair
density function Np()), the chord pair density function Ni()) and the profile pair
density function Na(A).

The aim of E-stereology for pairs of parallel sections is to derive equations which
are satisfied by the parameter Ny and the IPDF's. The main results are provided
below (Wiencek, 1996).

For a system of spheres, the stereological equation which is satisfied by the
parameter Ny and the function Np(1) is of the form (Wiencek, 1989)

N, = _Z_[d_”\i}(ﬂ:l ] (30)
Vs dA =0

if the derivative exists. The very instable estimation of the third derivative makes
formula (30) rather impractical.

For a complex number s, the Mellin transformation M(s) of Ni(X) is given by
(Dziubifski and Swiatkowski, 1980)

M(s)= T/F“NL (dr . @31

For a system of spheres the following equation holds for Ny (Duvalian, 1972;
Wiencek, 1996):

N, =2m(-2) (32)
T

An example of Ny-estimation for a FesC dispersion in steel which is based on
formula (32), is given in Wiencek (1996). Finally, for a convex particle system,
there holds the following equation for parameter Ny and function Na(A) (Wiencek,
1998)

N, = —{M} | @33)
i i

A more detailed description of the Ny-stereology discussed here is given in this
issue (Wiencek, 1998).

The disector. For convex particles, Ny-estimation by the disector (Sterio, 1984) is
closely connected to that by pair of planes P(L) given above. An approximation of
the derivative in (33) by the differential quotient for dA ~ A leads to a formula
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which is equivalent to (20) for t= A In such interpretation, formula (20) expresses
the disector principle of counting for the convex case. An example for estimation of
grain density Nv for polycrystalline iron using the disector is given by Kurzydtowski
and Ciupinski (1996).

In principle, disector gives a rule for counting also of noncovex particles (Sterio,
1984). In a more detailed description, a non-convex particle is characterised by the
so-called Euler number (EN) X (Ohser and Lorz, 1994; Stoyan et al., 1995).

Consequently, a structure E is characterised by the density of the EN, x- DeHoff
(1987) and Gundersen et al. (1993) described methods for yy-estimation by the
disector. Recently, Ohser and Nagel (1996) have developed a more general EN-

stereology for parallel sections. From their theory the following equation for pairs of
planar sections results

t =5l END)-2(EB)NENE),) G4

where : xa () 1s the EN-density of a section set (. ) and Bz is the set B translated by
z. Formula (34) shows that , -estimation may be reduced to point counting
measurement made on sections and their appropriate set-transformation. An example
of 5 ~estimation for pre-eutectoid ferrite particles in steel (Zurek, 1994; Sachova et
al., 1996) is given in Ohser and Nagel (1996).

From the point of view of the present paper, it is important to notice that for
convex particles the yv-formula (34) reduces to an Ny-formula. In this case, for a
given small A > 0 the EN-density x A(ENE) N (ENE)). is approximately equal to

the IPDF Na(A) and ( 34 ) coincides with ( 20 ) for t =\, which presents the disector
rule. As a result, for A—0 formula (34) becomes (33).

STEREOLOGY FOR A SERIES OF PARALLEL PLANE SECTIONS

In principle, Z-structure stereology for a series of parallel plane sections is
similar to that for a pair of parallel plane sections. In spite of this similarity, due to
the more complex test object it is being analyzed here separately and later, although,
chronologically, this kind of stereology appeared earlier than Ny-stereology for
pairs. In addition, the mathematics of a series, which is based on stochastic
processes, is quite different from that of a pair.

The original approach was introduced into stereology by Kraj (1967). His ideas
were then further generalized and developed by Bodziony and coworkers (Bodziony
and Kraj, 1968; Bodziony et al., 1972).

The idea of this approach is as follows. Let E be a fixed plane in R S H. The
plane Eq is parallel to E at a distance t. The intersection Z N Ey is a system of convex
figures which form a twodimensional particle structure in E;. Let Ty < E; be a rigid
quadrat of area A. N(t) is the number of & N B -particles which belong to T
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(a particle belongs to T if its reference point belongs to Ty). Taking t as a variable,
the function N(t) may be treated as a realization of a stationary birth-and-death
stochastic process of a Markov type (Kraj, 1967). The fundamental characteristics of
the process, ie., the asymptotic number distribution (with variance ¢*) and the
correlation function r (t) are binomial and. exponential, respectively. As a
consequence, the following formula for Ny is obtained :

N, 2—02% . (33)

This equation is the basis of the so-called coupled plane sections method for Ny-
estimation (Bodziony et al., 1972). An example of its application is given in this
issue (Rys$ and Wiencek, 1998).

CONCLUSION

The review presented shows that a lot of work has been invested in Ny-
stereology. It seems that in stereology there is no other parameter to which so much
study has been devoted. It is well known that Ny is a quite difficult parameter since,
by contrast to Vv, Sy, and My ( in the general case and even for convex particles),
no equation exists which relates this parameter Ny (as a fundamental characteristic
of a particle system) to quantitative characteristics of simple sections. Obviously, it
is closely connected with particle system geometry in a broad sense, i.e., with its
topology. In this situation most of the existing results in Ny-stereology are
developed for special models of which the sphere model is the most popular.

In the authors' opinion most activities in Ny-stereology have come from
metallography. This is probably connected with the fact that in metallurgy simple
isometric structures are typical, which can be easily described by simple models. In
the area of dispersed phases, the spherical approximation is still widely accepted.
However, it is obvious that when the particle shape differs significantly from a
sphere, such an approximation does not ensure a sufficient precision of the
estimation in all cases. An alternative is Ny-estimation by parallel planar sections.
Here, the disector ensures an unbiased result, at least in principle. However, this
method requires the production of very thin parallel sections, which is often in
metallography very difficult. In this situation, metallographers are primarily
interested in developing methods which make it possible to estimate Ny from
sections which can be generated in an easier way.

By no means Ny-stereology should be considered to be a closed area of
investigation.

The authors wish to thank the referees for their many valuable suggestions.
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