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ABSTRACT

A system of convex perticles distributed in space is characterised by the particle density Ny.
The intersection of the particle system with a pair of objects (points, parallel lines or parallel
planes) separated by a distance A, is characterised by a pair density function, i.e., the density of
pairs of particle intersections as a function of A. Stereological formulae for Ny, related to the
pair density functions are given. They form a basis for development of stereological methods
for Ny - estimation by counting measurements made on parallel sections.

Keywords: convex particles, erosion, parallel sections, particle size, random closed set, random
function.

INTRODUCTION

For about 25 years, the problem of the particle density Ny estimation by counting
measurements made on the intersection of a particle system with the pair of> points (Wiencek,
1989), parallel lines (Duvalian, 1972; Ry$ and Wiencek, 1983) and parallel planes (Bodziony
et al., 1972; Wiencek and Hougardy, 1983 and 1988; Sterio, 1984) have been analysed often
and some interesting results are in this field of stereology.

The aim of this work is to present a more general approach to this problem which is based
on a stochastic model in which particle structure is considered as a random closed set. In this
context, the stereology for simple sections (for point, line or plane sections) can be developed
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by the use of the ergodic random functions. The stereology for the parallel sections includes
three parts, as follows: (i) the stereology for simple sections, (i) the transformation of the
structure by erosion with a pair of parallel objects into an eroded set, and (ii1) applying the
stereology in (i) to the eroded set, which leads to the solution in the stereology for parallel
sections.

Space and geometrical objects

In Euclidean space R’, a Cartesian coordinate system is given, Fig. 1. Let x = (x,, X,, X5)
be a point in R®, the point o=(0,0,0) is the origin. The space R’ = {x=(x, X, X3)}-
R'(r=0,.., 3) is a subspace of R>. R°=0, R'= {x =(x,,0,0)} and R*= {x= (x,,x,,0)}.
Another subspace L*™ is the orthogonal complement of R in R, the special cases are, L°= o,
L'= {x=(0,0,x,)}, L’= {x = (0,x,,x;)} and L’ =R,

Fig. 1. The spaces R"and L’ (r=0,..3),
particle structure Y? and
geometrical objects T=R
T and T(A) (r = 0,1,2).

M’ (r=0,..., 3) will be a measure of an r - dimensional domain in R” or in L’ (here, the
superscript T in M’ is an index and not a power, this convention will be used below). In the
particular cases: M= 1, M' =L is the length of a segment, M? = A is the plane area, and
M? = V is the volume.

The following r - dimensional geometrical objects T* (r = 0,1,2) will be defined, the point
T° =R, the line T' = R and the plane T> = R*. Next, for a given A (A > 0), the object T} is a
parallel one to T" at a distance X1 =A. T'(A) = T LT} is a pair of parallel objects, i.e., a pair
of points T°(A), a pair of lines T'(A) and a pair of planes T°(A), Fig. 1. The objects T'
and T'(A) will be used for generation of intersections with a structure in R’, while the space
L*" will be used, for generation of particle projections or for defining any functions.
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The particle structure model

Geometrically, a particle y3 will be regarded as a convex body to which is assigned a
so-called reference point x(y3) (e.g. the center of mass). The particle is characterised
quantitatively by a set of numbers Z(y3) = Z, for instance, Z = V is the volume.

Letx; (i=1,2...) be a point in the space R® and y; a particle with its reference point x;.
The particle structure Y° in R® can be written as follows

Y=|]y]. M

-t

1

Il
ul

In the structure Y° , the particles do not overlap. The particle structure Y> will be considered as
a realization of an isotropic and ergodic random set (Lantuejoul, 1990; Stoyan et al., 1995)
and will be called the random particle structure Y° (denoted also by Y3), i.e., the structure Y°
is a realization of the random structure Y°. By definition, a random structure Y> is
homogeneous (stationary). Its particle reference points form a homogeneous point field in R>
with the point density Ny (i.e. the average number of points per unit volume, as a result of
averaging in the set of possible realizations of the random Y3). It will be assumed that Ny is the
particle density of Y?. The other parameter of the random structure Y° will be a Z-density,
Zy (ie., the average sum of the particles parameter Z per unit volume, as the result of
averaging in the set of possible realizations of Y3)4

Because of ergodicity, the parameters Ny and Zy are also characteristics of every structure
Y’ In this case, the parameters are considered as the results of averaging in the whole space
R’. Therefore, from the structural parameters point of view it is not necessary to distinguish
between the random structure and its realization. However, in situations where the
differentiation is of significance it will be obvious from the context of the problem being
analysed.
In the following sections, two stereologies of the Y? structure will be considered. The first, for
simple sections generated by T' and the second, for parallel sections generated by T'(A).
Because the random structure Y is homogeneous and isotropic, the fixed objects T' or T'(1)
can be used for generation of the sections.

SIMPLE SECTIONS
The set y' = y3m T' (r=0,1,2), a non - empty intersection of the particle y3 with the object T',

is an 1 - dimensional particle. The structure Y'=Y>~ T", an intersection of Y with T" is a set
of non - overlapping particles y} (j = 1,2, ..) which are distributed in space R'= T". The
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special cases are as follows, Y°is a point y°in R®, Y' is a system of chords y' in R' and Y’ is a
system of convex profiles y2 in R Formally, the structure Y’ can by written analogously to Y?
by a formula of the type (1).

For a given structure Y', the particle reference points form a point field in the space R’,

with a point density N ., which is assumed to be the particle density of Y"in R'. The special

cases are as follows, flgr r=0, Ny is the point density of Y° (here, the subscript N in Ny
denotes M°); then, for r=1, Ny is the chord density of Y and for r=2, N is the profile
density of Y2 Nyps

For a particle y3 of the structure Y°, the parameter Z will be chosen with regard to the
intersection with the T" object. Let the set y3 [ (r=0, 1,2) be the projection of y3 onto L**

and M>™ be the measure of this set. Because M>™ is the measure of all non-empty intersections

will be the only parameter of the structure Y'.

of the set y3 with the object T, it will be assumed as a parameter of the particle y3 itself and be
denoted by X*”, i, Z=X"". Consequently, the X°"- density, X>"is a parameter of the
structure Y°.

The special cases for the parameters. of the structure Y? are as follows, for r=0, Vy is the
volume density; for r=1, Ay is the projected area density and for r=2, Ly is the projected
length density. Table 1, presents the parameters X3 and N, for the respective r's, r = 0,1,2.

Table 1. The structural parameters of Y’and Y (r=0,1,2)

T X3 Ny

0 Vv Ny
Ay Np

2 Ly Na

The fundamental equation for simple sections stereology

For a given structure Y° and object T" (r=0,1,2) in R®, the structures Y° and Y=Y’ A T'
are not independent and their parameters X3, and N
equation (Wiencek, 1996):

A » Tespectively, satisfy the following

X3 =Ny, forr=0,12. )
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Equation (2) is of fundamental meaning in simple section stereology. The special forms of
equation (2) indicate that the parameters in a given row of Table 1, are equal to each other. A
possible proof of equation (2) will be given below.

Let T; (r=0,1,2) be a closed set in R" which is connected with the origin o. It is the

point T =0 or an r-dimensional unit segment:
T, ={xeR:0<x; <1, i=1,..1} forr=1,2.
In particular, T!c R'isa segment and T R%is a quadrat. In contrast to the geometrical
objects T' (e.g., the plane T?) the set T; is denoted by a non-bold letter T. A number M(TF),
which characterises the size of T; , is equal to one, i.e., M( T)=1

The set Q, =T} x L*isa subspace of R’, which is determined as the Cartesian product
of T, and L Q, =R’ while the other Q.’s can be written as follows:

Q,={x€R3:0£xi£1,i=1,.“,r} forr=12

Fig. 2. shows the Q; (r=0,1,2) and the respective T and L3", as well.

O 0
Io =|T"=0

Fig. 2. The sets T, and subspaces Q, X

(r=0,1,2). A(\

For a given structure Y’ and a subspace Q,, the set

Y(Q) ={yle Y’ :x; €Q,}
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where x; is the reference point of the particles y? . Y3(Q,) is a particle structure which belongs
to Q,. Because of the Y° - homogeneity, the stereological parameters of the structures Y? and
Y3(Qr), i.e., Ny and X% are the same.

Let y} (j=12...) be a particle of the structure Y'c R' and x; be the reference point of
such a particle y; e Y? for which y;=y; T". For a given Y'and T}, the set

Y(T;) ={yje Y :xj € Q,} for r=0,1,2

is a particle structure which belongs to T;. The structures Y' and Y'( T} ) are characterised by
the parameter N . It is important to note that for a homogeneous random structure Y the
parameter N, . is independent of the convention used for defining the particle reference point.
However, by all the unbiased countings for an averaging procedure used to determine N, ,,
the reference points are to be chosen in an unique manner.

The random function

Let T¢ and T¢ (r=0,1,2; x € L*") be the object T" and the set T?, after a translation by x
in both cases. Y Ty is an r-dimensional structure in the space R} =Tg. For a given structure
Y?AT! and the set T¢ , the set Y'(T} ) is a particle structure which belongs to the TS .

Let k (k=0,1,...) denote the number of particles which belongs to Y'(T} ). For x as a
variable k(x) is a function, which takes integer values and is continuous almost everywhere
in L’ Let Q be a domain in L** and M(Q) = M be its measure. The mean (k) of the k(x)
function, which is given by

(k) = lim M jk(x) dx
Moo 3

is the result of averaging in the space L
It seems obvious that the mean (k) is equal to the parameter X3* (here, considered as the
result of averaging in the space Q,),

(k) = X3 3)

For a random structure Y3, the function k(x) can be considered as a realization of an ergodic
random function (stochastic process) {ky, x € L3'r}. For x =0 (at the origin o), k, is a discrete
random variable with its mean (the result of averaging in the set of possible realizations), being
aqual to (k), because of ergodicity. By definition, k is equal to the number of particles which

belongs to Y'(T; ). Consequently, the mean of k, is equal to the particle density N Mo
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(k) =Ny 4

The substitution of (3) into (4) results in (2).
It is important to notice that in the simple section stereology presented which is characterised
by equation (2), the particle density Ny does not occur explicitely.

PARALLEL SECTIONS

An intersection of the particle structure Y? with a pair of parallel objects T'(L) (r=0,1,2)
separated by a distance A leads to a stereology in which it is possible to give formulae for the
particle density Ny. The transformation of the structure Y° by erosion with the parallel objects
T'(A) generates an eroded set. It will be shown that the Y structure stereology for parallel
sections is equivalent to the eroded set stereology for simple sections. When applying the
stereology for simple sections given above to the eroded sets, it is possible to derive equations
of the stereology for parallel sections.

The particle size

For a given particle y3 and object T'(X), the event y3m T'(A) =0 ocuurs only when the
events ysmf(k) #0 and y3m Ty #0 also occur. The event y3m T'(\) #0 can be chosen as the
basis for a particle size definition with regard to the object T'(A). It seems obvious that the
event y3 A T'(L) #0 can occur only when A is less than a given value D;. This D; value will be
used as the size of particle y3 with regard to the object T'(A). A possible analytical expression
for the particle size is given by

def
D, = sup[A: T'V) ny? #0,xe L*,

where: y? = y3 +x={z+tx:z € y3; X € L3‘r} is the y3 translated by x, when x(y3) = 0. The
particle size D, is the largest distance between two parallel objects T, Ti_p € T'(A=D) which
are tangential to the particle. It is easy to show that the particle size defined above is equal to
the length of the largest chord of projection y3 IL>" in the x,+; co-ordinate direction. The
special cases are as follows, D, is the largest chord of y3 in the x, direction; D; is the largest
chord of projection y3 |L*" in the x, direction and D; 1s the projected length of y3 onto L. (In
the following, the index r in D, will be neglected.)
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It is important to notice that for a single particle the above size definition is rather
ambiguous. However, when a particle is a member of the collection Y? such a size has a well-
defined value.

It will be assumed that a given particle y; of the structure Y? is characterised by the size
D;. Consequently, the structure Y? is characterised by the particle size distribution Ny(D)
which gives the density of particles with a size less than D. The main properties of the Ny(D)
are as follows: Ny(0) = 0 and Ny(D) = Ny for D>Dy,, (D, is the largest size). An integral form
of the parameter X3 " can be expressed by Ny(D), as follows:

D
X3 = j (X (D)) dNy(D), ®)

whenever this integral exists. (X3 " (D)) denotes the mean of X3 for the particles of size D.

The pair density function

For a given structure Y? and object T'(A), the intersection Y? AT'() is composed of two
r-dimensional structures Y = Y’AT" and Y} = Y’ T},

3
YT = YUY;.

For A < Dy, the structures Y' and Y; are conjugated by the events y3r\Tr(7») #0.

In the structure Y, the particles y* = y° ~ T" for which y> ~ T(A) #0 will be distinguished
and denoted by y'(A). There is y'(A) = y° ~ T" when y° ~ T'(A) #0 occurs.

The set Y'(\) Y is a set of the y'(A) particles and N, (A) is its particle density. The
special cases are as follows, Ny(A) is the y°(A) point density of Y°(A); N(A) is the yl(k)
chord density of Y'(A) and Na(A) is the y*(A) profile density of Y*(A). It will be assumed that
N, (A) is also the density of the pair of particle intersections of YA T'(A) in relation to the
space R > T. The special cases are as follows, Ny(A) is the density of pair of points of
Y3mT°(7»); NL(A) is the density of pair of chords of Y3mT1(7L) and Na(L) is the density
of pairs of profiles of YA TZ(}»). The set Y'()) represents the set Y3mTr(7») with respect to
the parameter N, . (A). For A as a variable, YA T'(A) and Y'(A) are the sets which depend
on A, their characteristic is the so- called pair density function N, .(A). It is, for A — 0:
Y’ AT(W) > Y and N, (\) > N, ..
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Erosion and the eroded set

The set Y'(L) mentioned above is a transformed one of Y'=Y>~ T by T'(A). Another set
transformation will be related directly to the particle set Y.

Given a particle y3 with reference point x (y3) = o and an object T'(A) for A < D. A
transformation y? (A) of the particle y3 by T'(A) is given by

i = JFP Ty Ty 203, (6)
xel>T

where T} (1) is the object T(A) translated by x and x e L’™. It is obvious that y*(}) is a

convex subset of y°,ie, y'(M)cy’ .

It should by noted that the transformation defined by (6) is eqivalent to the morphological

erosion of y’ by an r+ 1 - dimensional convex object t"*'(A), which is bounded by T(A). It

can be described as follows

vy =yoet'w,

where © is the usual symbol for the erosion (Serra, 1982). Because of equivalence of the
transformations above, the one given by (6) will be considered as an erosion of y3 by T'(A)
and described by using ©, as follows

Y:(A) = yOT®m,

where y? (M) is the eroded particle. As an example, Fig. 3 shows a circle eroded by a pair of
points T°(X) and a pair of lines Tl(k.).

% 2
yi() Yo (M)
LA
0 ﬁ / ‘(’
Fig. 3. The eroded particles To(k ) Tl(} )
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As a convex set, the eroded particle y° (L) can be treated as a particle with the following
property: the occurrence of the event y’(A) NT" =0 is equivalent to the occurrence of the
eventy’ N T'(\) =0 It follows

Yy =y, T (7

For a given structure Y° and T'()), the eroded set
Y (W) =Y OTO)

is the set Y* eroded by T'(A), and is a set of the eroded particles y>;(A) (i=1,2,...). It can be
described by a formula of type (1) in which the particle reference points are the same as for Y’
The eroded set Y’ ()) is homogeneous but not isotropic. From (7) it follows that for a given
set Y’ (1) and the object T", the following fundamental relation is satisfied

Y'(A) =Y (W) T (3)

This means that with respect to the set Y'(A) the intersections of Y? with T'(\) are equivalent
to the intersection of Y (A) with T".

For a given A, the eroded set Y. (M) is a set of convex particles y; (1) which are arranged in
the space R®. Therefore, their quantitative description can be made analogously to that of the
particle structure Y’, ie., with regard to the intersections with the object T".

A particle y:(\) will be characterised by the parameter X>T(L) which is equal to the
M>"-measure of its orthogonal projections onto L Consequently, a stereological parameter
of the eroded set Y>(A) will be the X>"(A) - density, X3 "(A). The special cases are as
follows: for =0, Vy(}) is the volume density of Y. (A); for =1, Ay(}) is the projected area
density of Y7 (1) and for r=2, Ly(}) is the projected length density of Y; (1). Then, for the
variable A, the eroded set Y; (A) which depends on A is characterised by the so-called erosion
function X3 " (1) .

It follows from (8), that the intersection Y'(A) of the eroded set Y, (A) with the object T'
which depends on A is characterised by the pair density function N, () only. Table 2.
presents the erosion functions X3 (L) and the pair density functions N, (M) for the
respective r's, 1 =0,1,2.
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Table 2. The erosion functions X3, " (A) and the pair density functions
Ny M) (r=0,1,2)

r X3 (V) Ny )
0 Vy(A) Nn(M)
1 Av(A) NL(D)
2 Lv(}) Na(h)

A fundamental equation for parallel sections stereology

For a given A, the eroded set Y’()A) and its intersection Y'(A) with the object T" are
characterised by the parameters X3 (\) and Ny (A), respectively. Because the particles of
the eroded set Y ()) are convex, the parameters X% () and N, (A) satisfy formula (2) in
the following form (Wiencek, 1996):

X3 =N, (V) forr=0,1,2. ©)

For ) as a variable, equation (9) is an equation with the erosion function X3 " (A) and the pair
density function N, (A), which is the fundamental stereological relation for systems of convex
particles with respect to their intersections with an object T'(A) which depends on A. The
special forms of equation (9) indicate that the functions in a given row of Table 2. are equal to
each other. Formula (2) is a particular case of (9), namely, for A =0 equation (9) transforms
into (2).

The erosion function X3 " (L)

The erosion function X3 "(A), is a characteristic of the eroded set Y?(\) which depends
on A. The basis properties of the X3 (L) are, as follows: it is a continuous, non-negative,
monotonic and non-increasing function of A in the interval [0, Dy,]. Further properties of the
X3" () function are closely connected to the size distribution Nv(D).

For a given A, D(A) will denote the size of an eroded particle y?(A) with respect to the
intersections with an object T'(A). It will be defined analogously to the size D of a particle y3
and is given by the largest distance between the components of the object T'(A), which are
tangential to y> (). As a result, the size D()) is connected with D as follows

DA) =D-\ for D>A. 10
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For a given A, a particle y;;(A) (i=1,2, ... ) of the eroded set Y (A) is characterised by
the size D;(A). The size distribution Ny [D(A)] gives the density of particles with a size less than
D(M). The size distribution of Y.’ (A) is closely connected to the one of Y?. Because the erosion
by T'(A) removes all the particles of Y? whose size D is less than A, the functions Nv(D) and
Ny[D(A)] are related:

Ny[D(V)] = Ny(D) — Ny(D=2) for D>A.. a1

Let, for a given A, <X3‘r[D(?‘,)]) denote the mean of the X3"(X)-parameter for the
eroded particles y;;(A) which have the same size D(A). An integral form of the erosion
function X% (A) can be given by formula (5) when applied to the eroded set Y’ (\) and by
taking into consideration the size distribution Ny[D(A)], it results in:

Dm(%)
Xy = I(X3_'[D(7»)]> dNy[D@)]. (12)
0
After substitution in (12) for D(A) =D - A and taking into consideration (11), one gets the
equation

Dm
XV = I(XH(D,?»)) dNv(D), (13)
A

where (X377 (D,A)) denotes here the (X*[D(A)]) as a function for the particles of the
structure Y. Equation (13) expresses the erosion function X37" (A) by the characteristics of
the structure Y3> the size distribution Ny(D) and <X3_r (D,A)) which is determined by the
shape of the particles. Consequently the erosion function given by equation (13) can be
interpreted as a characteristic of the particle structure Y? with respect to the intersections with
the object T'(A) which depends on A.

A stereological equation

The substitution of (13) into (9) results in

Dm
N, () = j (X*(D,))) dNy(D). (14)
A




ACTA STEREOL 1998: 17/2 ’ 169

Equation (14) connects the size distribution Ny(D) of a structure Y° with the pair density
function N, (A) of the set YA T'(A) which depends on A. This is a fundamental
stereological equation in the stereology of a particle structure Y® intersected by parallel
sections. The practical use of (14) is possible if the ( X3 (D,)\)) function is known explicitely.

THE PARTICLE DENSITY Ny

In the stereology for parallel sections, the formulae for the particle density Ny result from
equation (14). For the case of parallel plane sections, a more general analysis for convex
particle systems is possible. In other cases, an approach based on a system of spheres will be
given. A more detailed analysis will be given for the particular T'()) objects in an opposite
sequence of the r superscript, i.e., forr=2, 1, 0.

The pair of planes TZ(X)

The size D of a convex particle y3 with regard to the pair of planes Tz(k) is the projected
length onto L'. The particle structure Y° is a system of convex particles which is characterised
by the particle density Ny and the size distribution Ny(D).

For a given D and A (A<D), the y3 particle parameter X3'r(X) for r=2 with respect to the
intersections with the TZ(?») is equal to the projected length L(A) = D(A) of the eroded particle
y> (V).

The set Y> Tz(k) which depends on A is characterised by the pair density function
Na(L). The function ( X*~7 (D, A)) for r=2 is equal to D(A). The substitution of D(A) given by
(10) into (14) for r=2 results in

Dm
Na() = j (D-1)dNy(D). (15)
A

Equation (15) is a stereological equation for a convex particle structure Y* investigated with
parallel plane sections. It is a more general version of equation (16) in (Wiencek and
Hougardy, 1988). Differentiating (15) with respect to A gives

NP M) = Ny(h) -Ny
and for A=0

Ny = - NP @ =0). (16)
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Formula (16) for the particle density Ny is a fundamental relation in the stereology of a convex
particle structure Y? intersected with the parallel planes.

The pair of lines Tl(k)

A spherical particle y3 is characterised by a diameter D. The structure Yisa system of
spheres with particle density Ny and a diameter distribution Ny(D).

For a given D and A (A <D), the y3 sphere parameter XS"(X) for r=1 with respect to the
intersections with the pair of lines Tl(?») is equal to the projected area A(L) of the eroded
sphere y; (A), which is given by the formula

A(A) = 0,5 D? [arccos (%j—% 1—(%]2 } 17

The set Y3mT1(7\.) which depends on A is characterised by the pair density function
Np(A). The function (X3~ (D,A)) for r =1 is equal to A()). Substituting (17) into (14) for
r=1 gives

Dm

Ni(A) = 0,5 I D? [arccos [%)—% 1—(%)2 } dNy(D). (18)
A

Equation (18) is a stereological equation for a system of spheres Y? intersected by parallel

lines.

The Mellin transformation of Ny ()
For a given complex number s the Mellin transformation M(s) of Ni(A) is, as follows:

M(s) = I AN (L) dA, ' (19)
A

if this integral converges. Substituting for Np(A) from (18) and performing the integration

yieldsfors=-2,1,2, ...:

_ Is+2 s+2
M(s) ) Ny(D" ), (20)
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where <Dk) is the k-th moment of D and

A T[k+1)/2]

I, = =0,1,2, ... h ; Wi 996).
k=75 TI(2)+1] fork=0,1,2, ..., (Bach, 1967, Wiencek, 1996)

Fors=-2, <D0> =L I,= g and equation (20) gives the following formula for Nv:

Ny = M2 @1
T

Formula (21) for the particle density Ny is a fundamental relation in the stereology of a system
of spheres Y intersected by a pair of parallel lines. It is an exact version of Duvalian’s formula
(Duvalian, 1972).

The pair of points T°()

The Y structure is again a set of spheres with a particle density Ny and a diameter
distribution Nv(D).

For a given D and A (A <D), the y3 sphere parameter X3"(K) for r=0 with respect to the
intersections with the pair of points T°() is equal to the volume V(}) of the eroded sphere
y2 (1), which is given by the formula

Vo) = %(D AP @D+ (22)
The set Y3mT°(X), which depends on A, is characterised by the pair density function

Nn(L). Here, the function (X3'r( D,1)) for r =0 is equal to V(A). Substituting (22) into (14)
for r=0 gives

Dm
Nu(h) = % j (D-21)% 2D + 1) dNy(D). (23)
A

Equation (23) is a stereological equation for a system of spheres Y? intersected by a pair of
points. Differentiating (23) with respect to A gives

NP ) = 7% INy-NyD =] (24)
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For A =0, N (A =0) = 0, and the following limit exists

lim XINP L) = NP (A = 0). (25)
A0

Taking into consideration both (25) and (24) gives the following formula for Ny (Wiencek,
1989):

2
Ny = . NP(A=0). (26)

Formula (26) for the particle density Ny is a fundamental relation in the stereology of a system
of spheres Y’ intersected by a pair of points.

DISCUSSION AND CONCLUSIONS

The stereology of a particle structure for parallel sections depending on the distance A by
which the sections are separated, has been given. The general result has a form of the
stereological equation (14) which is satisfied by the functions: particle size distribution Ny(D)
and the pair density function N, . (). The particular cases of (14) are the equations: (15), (18)
and (23). On the basis of these equations it was possible to derive formulae for the particle
density Ny which are related to the pair density function Ny (1). The particular forms are
presented by formulae (16), (21) and (26). Formulae (16) in the stereology of a convex
particles system intersected with parallel planes is the most general result. Whereas, formulae
(21) and (26) only characterise the stereology of sphere systems for pairs of parallel lines and
pairs of points, respectively. These formulae could be used as a basis for the development of
stereological methods for Ny - estimation by counting measurements made on parallel sections.
The empirical pair density functions, if given, are in a discrete form for A; (i=1,2, .., n).
Therefore, in order to make possible the use of these formulae in practice their appropriate
numerical forms are needed. In the case of formulae (16) and (26) such a form can be
developed by numerical differentiation. However, in the case of formula (21) a numerical
approximation of the Ny (1) -function should be made (Duvalian, 1972). It should be noted that
the approximation of the derivative in (16) by a simple difference quotient (e.g., the forward-
difference formula) results in a form which is equivalent to the disector method for a convex
particle system (Sterio, 1983; Stoyan et al., 1995).

Finally, it should be pointed out that the equations (15), (18) and (23) may be interpreted
as integral equations for a known pair density function and an unknown size distribution
Nw(D). Some analytical as well as numerical solutions of such equations exist (Wiencek, 1996).
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