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ABSTRACT

If a particle system in a material's microstructure is considered as a random set with a particle
density Ny, the parallel plane sections may be described by a stationary stochastic process. A
stereological equation derived for this model by Bodziony and Kraj which satisfies the process
parameters and the particle density Ny is a basis for the Ny-estimation by the coupled plane
sections (CPS). Studies of a Nimonic alloy matrix grain structure in a series of parallel sections
indicate the compatibility of the model with the structure. The Ny-estimation result obtained is
comparable with that given by the disector.

Keywords: convex particles, random set, birth-and-death process, ergodicity, grain structure,
quantitative metallography, disector.

INTRODUCTION

In some material microstructures a phase can exist in the form of particles which are arranged
statistically uniformly in space. The particle density Ny is the main stereological parameter of
the microstructure. Ny-estimation using a stereological method belongs to the ones which are
the most time consuming in metallography. Most of the existing estimation methods were
developed for systems of spheres (Saltykov, 1973; Rys, 1995). For disperse phases
(Vy<<1), the sphere approximation is in principle acceptable. However, for micro-
structures in which the particle-grains are in form of polyhedrons which fill the space totally
(Vy=1), the sphere approximation is not sufficient.
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In the more general case of a convex particles system, Ny-estimation is possible by a
series of plane sections, provided the section structures are not statistically independent; they
are correlated. A fundamental stereological method for Ny-estimation is here the so-called
method of coupled plane sections (CPS) which was developed by Bodziony and Kraj in the
years 1968-1972 (Bodziony and Kraj, 1968; Bodziony et al., 1972). Another method which
appeared about 10 years later is the well known disector method (Sterio, 1984) which seems
to belong more to statistical methods because it is based on counting measurements which are
made directly in 3D space.

The main aim of the present investigations is Ny-estimation by the CPS for
microstructures in which the grains are filling the space totally.

THE GENERAL MODEL

It will be assumed that an unbounded structure Y is formed of convex particles which are
homogeneous and isotropically distributed in the space R’ In particular 'Y is set of
polyhedrons of plane faces which are filling the space. Here, the Voronoi model can be given
as an example (Stoyan et al., 1995).

Let t be an axis in the space R’ in which a point "o" is marked. An arbitrary point of t
is at a distance t from o, i.e.,t € R. A plane E; is perpendicular to t at the distance t from o. Tt
is a quadrat of the area A in E;, for which a vertex B belongs to t, see Fig. 1. The intersection
YAE; of Y with E; is a plane structure of convex profile-particles in E¢. To each particle in
Y E; a reference point (e.g., the center of mass) is assigned. It will be assumed that a particle
of E; belongs to Y(Ty) if its reference point belongs to Ti. Y(Ty) is a plane structure which
belongs to Trand n (n=0,1,2, ..., M) is the number of its particles (i.e., the reference points).

A significant assumption is that the structure Y will be considered as a realization of a
homogeneous and isotropic random closed set (Stoyan et al., 1995) which will be called the
random structure and denoted by Y, as well. The particle density Ny is a quantitaive
characteristic of the random structure Y. For the random structure Y and given t, the random
set Y(Ty) is characterised by a random variable Nt which takes integer values n with the
probability pt,. The parameters of the probability mass function (PMF) pyy are: the mean m;
and the standard deviation ot. Then, for a given t the pair of random variables Nt and Ny, are
characterised by the covariance C(Ni, Ni+). For t=0, the PMF, its parameters and the
covariance will be denoted by pp, m, ¢ and C(t) (since T = t), respectively.

For t, as a variable, the random set Y(T¢) which depends on t is characterised by the
random variable Ny which depends on t and which forms a discrete-valued stationary
stochastic process {Ni, te R} which is continuous in the parameter t (Fisz, 1980).
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A function N(t) which takes integer values n (n= 0,1, ..., M) and is continuous almost
everywhere in (—oo, +00), is a realization of the process {Nt, te R}. The stationarity is defined
in relation to the functions: the first-order PMF py, and the correlation function R(t,t) =
C(Nt, Ntt+r) which do not depend on t, ie., pqn=pn and R(t,7) = R(t) = C(t). This implies
that m{=m and o= 6. Some other properties of the function R(t) are as follows: for t = 0,
R(0) = o and for |t|— oo, R(t) tends towards zero. The last one results from an intuitive
physical interpretation, that if section structures are to be sufficiently far apart they are
statistically independent. In practice, often a normalised correlation function, r(t)=R(t)/c"
will be used, where fort =0, r(0) = 1.

The properties of a stationary process do not depend on the position of the origin o.
Because the {Ni, te R} process is symmetric relative to o, its analysis can be limited to the part
which belongs to the half space Ry = [0, «), i.e., for t > 0. Therefore, it will be assumed that
the random structure Y generates a stationary process {N;, t>0} as a set of random variables
Nt (numbered by a positive parameter t) of the same PMF's, p, and of a correlation function

r(t) with its properties given above.
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Ergodicity
The function N(t) is a realisation of the stationary process {Ni, t>0}. A stationary process is
called ergodic if it is possible to express its characteristics by means of a single realisation,
given in a form of a function N(t). In principle, ergodicity is a form of the law of large
numbers for stationary processes which is of importance for statistical estimation procedures.
An ergodicity, which is suitable for stereology will be expressed below.

Let for a given function N(t), a set t, (n=0,1, ..., M) in t be defined as follows
th= {t e t: N(t) =n}. Then, I5(t) is the length of t; which belongs to the interval [0, t] of a
length 1. It will be assumed that a stationary process {Ni, t>0} is ergodic, when the PMF py,
can be expressed by (Bronstein and Siemiendiajev, 1959; Papoulis, 1965)

1>

1
Pa = lim1™" J. 1o (t) dt (1)
0
and, for a given t = At (t > 0), the correlation function R(t) can be expressed by
1
R(1) = lim1” I [N(t) - m] [N(t + 1) - m] dt. )
15w
0

Equation (1) express the ergodicity in the PMF p, while equation (2), in the correlation
function R(t).

From a stereological point of view, a random structure Y will be a useful model for an
empirical particles system when it generates a stationary ergodic process {Ni, t >0} which is
ergodic in the PMF pj and in the correlation function R(t), as well.

THE BIRTH-AND-DEATH PROCESS

Bodziony and Kraj (1968) pointed out that the general process postulated above can by
modelled by a birth-and-death process which belongs to the class of discrete-valued stationary
Markov processes for a continuous t parameter (Feller, 1961).

For a given t and the integers k, n (k, n=0,1, .., M), the so-called transition
probability Pin(t) is the probability that Ni = n with the condition that Ni=o= k. For a given k,
there exists such a small distance t (denoted by At) that the random variable N almost always
takes one of the three values: k + 1 (birth), k — 1 (death) or k only. A birth-and-death process
is defined when the transition probabilities Pxn(At) are given. A general formula for Piy(At) is

as follows
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v(k)At+o(At) for n=k+1
P (At) = ¢ p(k)At+o(At) for n=k-1 3)
o(At) for n#k-1k k+1

where p(k) and v(k) are functions of k and o(At) tends towards zero faster than At. For the
transition probabilities, given by (3), the limit lim {_,o Pyy(t), if it exists, determines the so-
called asymptotic distribution of the process. It can be shown (Gichman and Skorochod, 1968)
that for the birth-and-death process above, the asymptotic distribution is equal to the stationary
distribution p,, which means, im (o Pkn(t) = pn. Consequently, for t — 00, R(t) = 0 which
is in accordance with the general model above.

Bodziony et al. (1972) have shown, that for the model above, a formula for the particle
density Ny may be written

Ny = 2o 3 [+ )] pa, )

n=0

where A is the area of Ty. This means, the parameter Ny is determined by the model functions
v(k), p(k) and py.
For a simple but important special case, the functions p(k) and v(k) are linear relative

tok,

vk) = v-2Ak

(5)

wk) = pk,
where v, A and p are positive constants. In this case the asymptotic distribution p, is a
binomial one, expressed by the formula

M
Pn = (n) p"(1-p™M, ()

where the parameters p and M are as follows

o
P
@)
M=
A

This means, the process {Ni, t> 0} of the transition probabilities determined by (5) is a birth-
and-death process with an asymptotic binomial distribution (Feller, 1961; Bodziony and Kraj,
1968). The correlation function 1(t) is as follows
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i(t) = exp [-(A+p)t]. ®)
Finally, the formula (4) taking into consideration (5) and (6) results in a simple form
(Bodziony et al. 1972)

Ny = AT+ p) o ©)

It is important to notice that for large M, according to the de Moivre-Laplace theorem,
the PMF p, can be approximated by a Gaussian distribution. In such a case, the stationary
Gaussian-Markov process {N¢, t>0} is ergodic relative to the condition given by the
equations (1) and (2) (Bendat and Piersol, 1971; Stark and Woods, 1986). As a result, the
formula (9) for Ny is a stereological relation in which the values A, p and o, because of (1)
and (2) can be considered as characteristics of parallel sections made for a given structure Y.

Some empirical remarks

It can be shown that some empirical results support the model above. In the metallography of
materials with homogeneous particle systems usually the microstructure is analysed on one
representative section. For a set of randomly positioned test quadrats T in the section plane, an
empirical PMF for the number of particle intersections in T needs to be estimated. Assuming,
that the structure follows the model above, because of stationarity and ergodicity, the empirical
PMF can by considered as an estimate of the model PMF py,.

An analysis of many data which are given for particles or grain systems in alloys shows
that the empirical PMF p, may by approximated by a binomial distribution. As an example,
Fig. 2 and Fig. 3 show the empirical p, function for the number of Fe;C-particles (Wiencek
and Hougardy, 1987) and ferrite grains in steel (Kasprzyk, 1990), in a test quadrat T,
respectively, in comparison with the binomial PMF (6) in a Gaussian approximation.

In order to support this statement, Table 1. gives some additional information
according to the empirical binomial parameter p (formula (6)), for Fe;C-dispersions in a
carbon steel (Fe — 0.6 % C, Vy = 9.5 %) of different dispersion degree and test quadrat size A.
The dispersions were formed during a coarsening process at 700°C different times (with the
passage of time the degree of dispersion became lower). All the analysed empirical PMF's p,
are of the binomial-type. (As an example in the Table 1., for the carbide dispersion which
coarsened for 300 h, the parameter p of a binomial distribution, estimated by a test quadrat of
area A =20 mm x 20 mm is equal to 0.31.)
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Fig. 2. Distribution of
the Fe3C- particle
sections number in
test quadrat.

Fig. 3. Distribution of
the ferrite -
grain sections
number in test
quadrat.
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Table 1. The p-binomial parameter of the distribution of the number of Fe;C-particle

sections in test quadrat.

test area A time h time h time h time h
mm X mm 100 300 600 1200
10 x 10 0.27 0.30
20 x 20 0.31 0.37 0.27
30 x 30 0.30
40 x 40 0.26
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According to the data above, it may be supposed that the binomial distribution p, is a

typical one for material phases which appear in the form of particles or grains. A more detailed
study (Stoyan and Wiencek, 1991) shows that the Fe3C- particles are randomly distributed in
the steel space, however, the sizes of the neighbouring particles are not statistically
independent. There are spatial correlations which can result from some non-stochastic
conditions which are imposed on the particle system, such as: (i) random distribution in the
space, (i) finite volume fraction Vy>> 0 and (iii) the particles do not overlap.
Unfortunately, it was not possible to find any empirical data on the correlation function R(t).
Therefore, based on the empirical PMF p, only, it could be stated, that from a {Ni, t>0}
process point of view, the spatial correlations discussed above reflect in equation (3) by the
parameter A in (5). Consequently, the empirical particle systems can by described by a birth-
and-death process with an asymptotic binomial distribution. It is worth noticing that for A — 0
the particle systems tend towards a Boolean model (Stoyan et al., 1995) in which the particle
sizes are not correlated and now the asymptotic distribution is a Poisson one (Bodziony et al.,
1972).

ESTIMATION

The estimation of the particle density Ny which is based on formula (9) is related to the
estimation of the PMF p, and the correlation function r(t) for a single realisation of the process
{Ni, t= 1}, given in the form of a function N(t), by using equations (1) and (2).

Let tj=(0—-1)At, (=1, ..., K; At>0) be a series of K points in t. The empirical N(t)
function, which is determined by counting measurements made on a series of parallel sections,
positioned in tj and separated by the distance At, will be denoted by N(i). For a given N(i)
function, the estimator m, of the parameter m may by calculated by the formula

K
mi= K Z NG). (10)

Further, the estimator R(j) of the correlation function R() in (2) for 1;=jAt, G=0,1,2, ...)is
given by the formula

K-1
R() = (K=" " [NG)-me] NG+ )~ m1], (an
i=1
where N(i +j) denotes the N(tj +tj) function. For j =0, R(0) = s* estimates the variance 6°.
The normalised function r(j) is, r(j) =R()/ s%. Tt should be noted that the estimator given by
(10) is unbiased, when the one given by (11) is asymptotic unbiased (Gajek and Katuszka,
1994).




ACTA STEREOL 1998; 17/2 183

Next, for an exponential correlation function r(t) (8), the estimator of the sum A+p is equal to
the slope of the estimated In (j) function. Finally, the estimator for the particle density Ny is
given by (9) in which A+ is replaced by its estimator.

APPLICATION

These investigations were carried out on a recrystallized, coarse grained Nimonic alloy. Fig. 4
shows a microstructure, etched using Marble's etchant (Rys et al., 1973) in which the matrix
grains have a form which is typical for a polycrystalline metal.

As a result of the qualitative metallography the grains have been considered to be
approximately convex polyhedrons with plane faces.

Fig. 4. Microstructure of
the Nimonic alloy.

There are two reasons for the investigations performed: (i) comparison of the structure
with the model, and then (ii) estimation of the grain density Ny by the CPS.

For the quantitative metallography four equal specimens (denoted I, II, IIT, IV) of a
cuboidal form of 36.10 mm height and with a mean quadrate cross-section area of 8.09 mm>
were prepared. A preliminary estimation of the grain size indicates that the nominal distance
between neighbouring sections should be At = 0.05 mm; this is cca. 7 times smaller than the
mean grain diameter. The coarse grain structure of the alloy used makes possible the
measurement of At with an acceptable accuracy. For each specimen, 30 sections were made by
mechanical grinding followed by precise polishing. The distance At between two neighbour
sections was measured by an optical interferometer with a precision of 5x 10 mm. The
deviations of the parallelism were less than 5 %. Because of the difficulties with preparation of
the sections, the measured distance At is not a constant value. Fig. 5 shows the distribution of
the 116 measured distances At, which belongs to the interval [0.048, 0.063] with mean
(At) = 0.054 mm. The section microstructures were taken at x 30 magnification. The section
microstructures which depend on the distance t; were represented by four series of 30 sections

or 120 sections totally. For a microstructure given in the i-th section, the number of grains N(i)
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was determined by the second variant of the Jeffries method taking into account Saltykov's
edge correction.
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Fig. 6 shows the empirical function N(i) (i=1, ..., 120) (the particular series I to IV are
marked) in comparison with the mean m4=43.2 which was calculated by formula (10) for
K=120. This empirical N(i) is to be considered as a realisation of a stationary stochastic
process {Ni, teR}.
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The function py

The empirical p, function was determined for the given function N(i) (i=1, ..., 120), its
statistical parameters are mq=43.20 and s = 5.90. The appropriate binomial parameters p and
M are p=0.20 i M =223, respectively. It should be noted that the p-value obtained is
comparable with those of the carbide-dispersions in Table 1. Fig. 7 shows the empirical PMF
Pn 10 comparison to the appropriate binomial one. Because of large M, the binomial PMF can
be approximated by a Gaussian distribution, Fig. 7. A more precise statistical analysis with the
x>-test indicates that the empirical PMF p;, can be considered as a binomial one.
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The correlation function r(t)

First, for the given N(i), 1=1, ..., 120) the parameter m; was calculated by (10). Then, for
tj=jM, G=0,1, .., 7) with At=0.054 mm the empirical R(j) function was calculated by
(11). Finally, by means of the empirical variance s’ =34381, given for j =0, the normalised
correlation function 1(j) was obtained. Fig. 8 shows the graph of In r(j) and the approximation
by a straight line. As a result, one can conclude that the empirical r(t) function is of
exponential type.

The Ny-estimation
The estimator for A+ in (8) is equal to the direction coefficient of the regression line for
the empirical In r(j) function. Its value, determined by the least squares method is equal to
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2.81 mm™. Substituting into equation (9), the estimators for A+p (2.81 mm'l) and s°

(s2 =34.81 mm°) as well as the mean area A of T; (A = 8.09 mmz) results in Ny= 12 mm™.
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In order to obtain information about the quality of the Ny-estimation given above,
another estimation by a direct counting of grains in samples was performed. For the given
function N(i), (i=1, .., 120) with the set of the At-distances between the subsequent
neighbouring sections it is possible to determine the total number of grains in the sample
investigated, by counting grains which appear or disappear on the subsequent sections. The
appropriate formula, given by Bodziony (Rys et al., 1972) is as follows

Ny = (2AL)_1(na +0g +20a), (12)

where: A and L are the section area and the height of the sample, respectively and then

n, is the number of the grains which appear on the subsequent sections,

nqg is the number of grains which disappear from the subsequent sections,

Naq is the number of grains which were intersected by the T; only once.
For the sample investigated, the particle density Ny which was determined by means of”
formula (12) is, Ny =13 mm™. This value is comparable to that which is determined by the
CPS. It should by noted, that the Ny-value obtained by formula (12) has a bias, caused by the
fact that some of the grains with a size less than At could be not taken into account. However,
for the coarse grained sample used, the fraction of such grains is not large.

It is worth also noticing, that the estimation method which is based on equation (12) is

equivalent to the disector method (Sterio, 1984).
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DISCUSSION AND CONCLUSIONS

The coupled plane sections method used is based on the following mathematical model. The
convex particles structure is considered as a realisation of a random set which is characterised
by the particle density Ny. The random structures which appear in parallel plane sections may
by described quantitatively by a stationary ergodic Markov process, i.e., a birth-and-death
process with an asymptotic binomial distribution and an exponential correlation function.
Some process parameters are related to particle density Ny. Because of ergodicity, the
Ny-estimation by the CPS method can be made as a single process realisation given in the
form of a series of parallel sections. The results of the study show:

(i) The Nimonic alloy matrix microstructure follows the model. In particular, the
empirical PMF is a binomial distribution (which is to be approximated by the Gaussian
distribution) and the correlation function is exponential.

(i) The result of the grain density Ny-estimation by the CPS is similar to that obtained by a
disector-like method which gives also an idea on the quality of that estimation.

It should by noted that the accuracy of the CPS used for the Ny-estimation was not taken
into consideration in this study. However, some remarks can be made. First, the precision of
the estimation is related to the statistical nature of the estimators for the parameter m and
the function R(t). Here, first of all, the sample size should be mentioned (the test quadrat size
A and number of sections K). Next, the precision is influenced by: (i) the determination
of neighbouring sections distance At, its realisation in practice and measurement, (i) the
At-distance distribution and (iii) the parallelism of the sections.

A detailed analysis of the precision by taking into account the factors above is a rather
complicated problem. As an example, Fig. 5 shows the At-distribution in this study which is
connected with the factor (ii). Nevertheless, because the difference between the estimation
results obtained by the CPS and disector-like methods are not large, one can conclude that the
factors above are of secondary importance in the present study. It seems, the precision of the
CPS method could be effectively investigated by simulation.

Finally, some simple and useful conclusions can be drawn:

— The Ny-estimation by CPS is time-consuming but the result can be considered as
reliable.

— The CPS method can be of importance in quantitative metallography when an
approximation of the particle shape by a sphere is not acceptable.

— The particle (grain) size should be not too small.

The authors wish to thank the referees for their valuable suggestions.
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