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ABSTRACT

Spatial Voronoi tessellations generated by cluster fields of the germ-grain type are
examined by means of simulations. The grains are Matérn clusters of globular or
spherical type and the germ patterns are either the stationary Poisson point process
or the cubic lattice. In particular, the effects of the cluster cardinality and size and
of the germ arrangement are described and discussed. Simultaneously, the planar
induced tessellations are investigated.
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INTRODUCTION

Voronoi tessellations of four different cluster fields are investigated in the present
paper. They may be considered as the germ-grain models in which the germ (or
parent) patterns are either the stationary Poisson point process (P) of intensity A,
or the cubic point lattice (L) of the same intensity and the germs are Matérn point
clusters Z (Poisson distributed number Nz of points — daughters — with the mean
N) of either globular (G - a uniform random distribution of daughters within a ball
of diameter D) or spherical (S - a uniform random distribution of daughters on a
sphere of diameter D) type. Or, equivalently, LG, LS are lattices of random clusters
in the terminology introduced by Santalé (1976) and PG, PS are Boolean cluster
fields. The intensity of cluster fields is A = N Ap, the ball size D is expressed by the
dimensionless parameter c, = D/p,(e), where p,(e) is the mean nearest neighbour
distance of the parents (p,(e) = 0554/\;1/3 and )\;1/3 for P and L fields, respectively).
The numerical results relate to the unit (A = 1) cluster field intensities. Hence, at a
given value of ¢y = cp, the cluster size is nearly two times greater in the L fields than
in the P fields.

A tessellation is described by the distributions of its cell characteristics. The size
dependent characteristics are homogeneous functions of degree —k/3 of the intensity
A = 1/Ev, where k = 3 for cell volume v, k = 2 for cell surface area s, k =1 for cell
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perimeter p and mean cell breadth w. The shape characteristics (mean dihedral angle
O, randomly selected dihedral angle f, number of cell faces n and ”isoperimetric”
shape factors g = 6v+/7/s3, f = 6v/(mw?) are independent of \. Any 3D tessellation
induces in a section plane a 2D tessellation of intensity A’ = 1/Ev’ = AEw. The
mean values of its size characteristics (cell area v, perimeter s') obey the stereological
relations Ev' = Ev/Ew, Es' = 0.257Es/BEw and its shape characteristics are edge
number n’ = 2/(1 — EO’/7), random edge angle 6’ and shape factor f' = ar /s’
Only Matérn globular clusters implanted in parent points of Poisson point process
with N = 5, 20 and ¢ ~ 1, 1.5 have been investigated as yet (Lorz & Hahn, 1993;
Van de Weygaert, 1994). As the effects of either daughter number NN or cluster size ¢
on cell characteristics are not monotone, a systematic research is needed.

PRELIMINARY CONSIDERATIONS

When the cluster size is very small (D < pp, €. g. ¢ = 0.005), the resulting tessellation
can be considered nearly as a refinement of the tessellation generated by the parents.
The main change produced in the boundaries of parent cells are new edges created
along their intersection with the symmetry planes of closely spaced pairs of daughters;
the corresponding dihedral angle is close to the value of 7 and its frequent occurrence
gives rise to a pronounced secondary mode in the p.d.f. of the random dihedral angles
9,8 (Saxl & Ponizil, 1998a, b) — ¢f. Fig. 3b. If clusters are of the S—type, the interior
of the parent cells is sliced into pyramid-like daughter cells; nearly each of them has
a base formed by a part of the parent cell boundary and, consequently, nearly each
daughter has a neighbour belonging to another cluster. Hence the term ” outer” cells
CO. Clearly Ev© = Ev = 1.
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Fig. 1 The p.d.f’s (a) and distribution functions (b) of the cell volumes v at ¢ = 0.005.
The ordinate of the plateau estimates the fraction of inner cells ay.

For clusters of the G-type, the situation is similar only if the cardinality Nz of the
cluster Z is small. However, it may happen starting with Nz = 5 that all neighbours
of a point are the points of the same cluster — sisters . The cell C/ generated by
such a daughter lies completely in the interior of the parent cell and will be called the
"inner” cell. It was already shown (Saxl & Ponizil, 1998a) that the proportion apn of
inner cells increases with growing N (at N = 30 is p &~ 0.4 — ¢f Fig. 1b), hence the
mean number N© of outer cells in a cluster is (1 —ay)N and clearly also N7 = ayN.
It can be assumed that the volume of the embedding ball is more or less uniformly
distributed between the cells of all daughters: Ev! ~ 7D3/(6N). Then Ev/(P) =
0.0283 ¢, Evl(L) = 0.166 ¢} (in the units of 1/); note the independence of N!). In
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particular, Ev!(P) = 3.5 x 1079 and Ev!(L) = 2.1 x 1078 for ¢, = 0.005 examined
in what follows (¢f. Fig. la). The mean volume of outer cells must simultaneously
increase as their number is (1—ay )N only, hence Ev§ =~ 1/(1—ay) if the total volume
of inner cells is neglected in comparison with the total volume of outer cells. Because
of the great difference in size of the outer and inner cells, the moments of the size
characteristics are determined mainly by the properties of the former ones. Let % (qn)
be the j—th general moment of a size property ¢, which is a homogeneous function
of degree —k/3 of A; the index N denotes that the value corresponds to the unit
tessellation with A = NA, = 1. Neglecting the contribution of inner cells, p;(qN)G &
(1 —an)i' (gn)°. Setting for ,u,g(qN)O the value of 1 (q(l_aN)N)S estimated from the
corresponding S-type tessellation (properly renormalized) we obtain

(1) wi(an)® & (1= an) M (g n).

In particular,

(2) Es§ ~ (1 - aN)1/3Es‘(91~QN)N,
1
(3) varv§ ~ 1_aN(VarU(Sl—aN)N+1)_1'

All the above equations apply to L as well as to G cluster fields. Eq. (2) with the
exponent 2/3 holds for the size characteristics pjc\;,, wlc\'}. It can be expected that the
repeated similar slicing of parent cells generated by S-clusters will not change the
properties of daughter cells considerably. Hence the effect of growing N is mainly due
to the power of (1—ay) and Equ’s (2), (3) explain the differences between tessellations
generated by clusters of different type, namely the continual decrease (after an initial
maximum) of mean values and a pronounced increase of variances of the cell size
characteristics in fields generated by G-clusters.
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Fig. 2 The mean cell surface s (a) and the variance of the cell volume v(b). The
behaviour of the mean width w and of the perimeter p is very similar. The
large dot at N = 1 denotes the PVT value, small dots show the estimates of
PG and LG curves using Eqn’s (2), (3).

Let N and the type of cluster be fixed and the different germ arrangement is consid-

ered. All parent cells are equal in L-tessellations and the distributions of cell char-

acteristics reflect various possibilities of dividing a slightly corrugated unit cube into
cube-filling cells. As ¢ is the homogeneous function of degree —k/3 of A, = 1/v,, the
general moment p’ ]L(q(vp)) of such a tessellation of a parent cell of volume v, is

(4) W5 (an (0) = w3 Y (g (1))
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Neglecting the difference in shape between the cubic and Poisson-Voronoi tessellations
(PVT), it could be proposed that the division of Poisson-Voronoi cells is quite sim-
ilar. Then integrating Eq. (4) with respect to cell volume distribution in unit PVT
(generalized y—distribution with ¢ = 6.289, r = 0.889 and b such that Ev = 1)

(5) W5 (gn () & s (0) VT x w'¥ (gn(1)),

where ¢/ 5(v)FVT is the jk/3—th general moment of volume in the unit Poisson-
Voronoi tessellation (u/;(v)FV7T = 0.98, 0.98, 1.179 for i = 1/3, 2/3, 2, respectively).
The main shortage of this hypothesis is that the generator of the parent cell lies in
the cell centre only in lattice tessellations. Consequently, the diversity of daughter cell
properties is much greater in tessellations with randomly distributed parents.

An interesting behaviour of the shape characteristics can also be envisaged. For exam-
ple, the number of faces of inner cells must increase from the value of 4 (tetrahedra)
to the value appropriate for PPP (15.53) as the region of inner cells with increasing
N approaches a piece of PPP. Consequently, a minimum of En at sufficiently high
N cannot be excluded even when En passes through a maximum at N = 15 also in
tessellations generated by spherical clusters. A more detailed description of the shape
characteristics is in Saxl & Ponfzil (1998a, b).

RESULTS

The incremental method with the nearest neighbour algorithm (Okabe et al., 1992)
was used to construct the Voronoi tessellation associated with point fields of examined
types. The tessellations generated by spherical fields would not be normal as the
daughter cells have a common vertex in the center of the embedding ball. In order
to avoid this, all daughters were given small i.i.d. random shifts £; their distribution
was 3-variate centred normal with the variance o2I,0 = 0.0002p,, hence 25times
smaller than the smallest value of ¢ used. This value ensured reasonable stability of
the construction.
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Fig. 3 Mean cell surface s at various cluster sizes for N = 5, 20. The dot at ¢ ~ 13
denotes the PVT value, the other dots are the results obtained by Lorz &
Hahn (1993).

The number of generating points was selected in such a way that after the careful

elimination of edge effects about 103 cells remained for the analysis. The procedure

was then 103 times repeated. Consequently, approximately 10° polyhedral cells were

simulated and examined for any choice of the cluster type (G or S), of the parent

pattern type (P,L) and of the parameters 1 < N < 30, 0.005 < ¢ < 10. Each sample
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of size 10% was also intersected by several random planes in order to make possible
the examination of the induced 2D tessellation, which is not of the Voronoi type. The
number of intersecting planes was such that the number of profiles per sample was
about 2.103, which resulted in the total number of examined profiles about 2.10° in
each considered case.

a. Effect of the number of daughters. The presence and size of inner cells are demon-
strated in Fig. 1la, their fraction ay can be deduced from Fig. 1b (any =~ 0.0133N).
The inequalities E e (LS) > E e (PS), Ee (LG) > E e (PG) are obeyed by all size
characteristics in agreement with Eq. (5) - however crude are the assumptions used
to deduce it, the observed ratio sk /s a2 0.93 is of the same order and sense as the
prediction (0.98). The inequalities E o (LS) > E e (LG), Ee (PS) > E e (PG) as
well as the occurrence of maxima on LG and PG curves are in agreement (even nu-
merically — ¢f. Fig. 2a)) with the prediction of Eq. (2). The maxima are shifted to
lower values of N as clusters with Nz > 5 are present in sufficient quantity already
at N =3 (10%) and 4 (15%).

Reverted inequalities var e (LS) < var e (LG), var e (PS) < var e (PG) (cf. Fig.2b
and similarly for varp, varw) are the consequences of Eq’ns (3),(1). The values of
variances are slightly underestimated by Eq. (3) — ¢f. Fig. 2b. Eq. (5) correctly
predicts higher values of variances in P—tessellations than in L-tessellations, but the
estimates are only about 50% of the true values.

b. Effect of cluster size. Three characteristic sizes of clusters can be defined. Let
A = N/(kR%) be the local intensity of daughters in the cluster. A cluster is said to
be dissolved if A = A; the corresponding cluster sizes are & ~ 2.3,ck ~ 1.2. Other
two measures of cluster size are based on the concept of cluster interaction. Using
the formula for the void probability (Stoyan et al., 1995), the probabilities p; of the
intersection of two cluster embedding balls and p, of their mutually including their
centres can be found (Saxl & Kohutek, 1997). Then at ¢ < ¢/’ = 0.5 the inequalities
p1 < 0.1,p2 < 0.01 hold whereas ¢ > cfo = 4 implies p;,ps =~ 1. Similarly, at

c<ch=larep;=py=0andatc>ck =2arep; =p; =1.
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Fig. 4 The p.d.f’s of sectional characteristics v’ (a) and ' (b). Note a pronounced
mode near z = 7 present already at N = 1 and further modes in sections
of L-tessellations (thick line — LG).

The effect of cluster size differs in four considered cases — Fig. 3. The values of the
size parameters fullfil the inequalities E e (LS) > E e (LG), Ee (PS) > E e (PG) at
small values of N (cf. Fig. 2a) and they all decrease to the limit value of E ¢ (PVT)
with growing c. The changes proceed first (below ¢g) within the parent cells (the
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inner cells grow and the outer ones diminish), then the interaction of clusters prevails.
The passage to PVT is not monotone only in the vicinity of cg;s and coo (cf. Fig. 3).
At higher values of N, the size characteristics either decrease (L-fields) or increase
(G-fields). Note that Lorz & Hahn (1993) could not observe different behaviour at
N =5 and N = 20 because of too great size of their clusters. More detailed results
can be obtained by analysing p.d.f’s and will be published elsewhere.

c. Planar sections. Many above discussed features are lost or hardly distinguishable
in the planar sections of 3D tessellations. As Ev' = 1/Ew and there is no substantial
difference in the plots Es vs N and Ew vs N, the order of curves in Ev’ vs N is
reversed and minima are observed instead of maxima. From similar reasons, lattice
and Poisson fields cannot be distinguished in the plots Es’ vs N. Also the p.d.f’s of
cell characteristics are rather similar (¢f. Fig. 4a) and different fields can be hardly
distinguished in practice when the resolution power and the accuracy of measurements
are much lower then in computer simulations. Variances of cell areas are perhaps the
most sensitive quantities (Lorz, 1990; Hahn & Lorz, 1994), unfortunately crossing
of curves occurring in Fig. 2b is repeated also in the corresponding sectional plot
varv'vs N.

A strong qualitative proof of clustering is the secondary mode of the edge angle ¢’
(¢f. Fig. 4b) prominent even at N = 1; however, it cannot be used to differentiate
between the considered cluster fields as it is incited by outer cells. In L-tessellations,
also other modes typical for sections of cubic tessellations are visible at low values of
N - Fig. 4b.
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