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ABSTRACT

Stereclogical methods of estimating the K-function for
d-dimensional particles in r" (d = 0,1,...,n) with respect
to a process of reference points are reviewed and unified. The
general theory is first presented in R™ and then followed by

an explicit treatment of the planar and spatial cases.
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1. INTRODUCTION

Second-order stereology deals with stereological methods
of making inference -about parameters describing variability and
interaction in spatial strﬁctures. The most simple example is a
spatial point process where the object is to examine whether
the points show clustering or inhibition. Here, the homogeneous
Poisson point process serves as a reference, representing fhe
complete‘random arrangement. If the points are indeed centers
of particles, it could also be of interest to study whether
there is an interaction between position and size. Here, the
null hypothesis may be independence between position and size.
For two spatial structures, the question could be whether there
is an attraction or inhibition between the two structures.

The East German School of Stochastic Geometry has de-
veloped stereological estimators of second-order properties of
random spatial structures in the last decade, cf. e.g. Hanisch
(1985), Hanisch and Stoyan (1981), Schwandtke (1988), Stoyan
(1981, 1984, 1985a, 1985b). In the present paper we will give a
review of some of these developments and show that they can be
derived from a single formula in geometric measure theory.
Related results can be found in Miles (1979), Jensen et al.
(1989) and zahle (1989).

In the present paper, we will take a model-based approach.
Thus, the probes (lines, planes and disectors) are fixed while
the spatial structures are regarded as random. The design-based
theory, where the randomness is on the probes, is somewhat
easier to formulate and does not pose restrictions (stationari-
ty, isotropy,...) on the structures. However, for many statis-

ticians, the model-based approach is more appealing, because it
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allows the formulation of stochastic models for the spatial
structures, including a model describing a complete random
arrangement.

In Section 2, we define the K-function which is the sec-
ond-order quantity to be studied. In Section 3, we formulate
the geometric measure decomposition which is needed for con-
structing the stereological estimators of the K-functions. 1In

Section 4, the estimators of the K-functions are presented.

2. THE K-FUNCTION

In this and the following sections we will formulate the
theory for R™ and then, as a rule, treat the'planar (n = 2)
and spatial (n = 3) cases explicitly.

The situation we will concentrate on, is the following. We
consider a point process in Rn, Vo = (X5}, which will be a
process of reference points. Together with this process we have
a process of d-dimensional particles, where d «can take the
value 0,1,...,n. We will be interested in studying the dis-
tribution of the particles around the reference points.

The particle process will be represented by a marked point
process ¥, = ([Yj;E-]}, where y. € R" is a point and E. C

J J J

T is a bounded subset of R". Here, yj is the 'center' of

R
the j'th particle Yj = yj+Ej, cf. Fig. 1. If (x;) = {yj},
we look at the particles from the particle centres. If, in
addition, Ej = {0) for all Jj, we simply have a single point

process. We assume that ¥, and v, are jointly stationary

and that v, is isotropic.
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Fig. 1. Illustration of the particle model.

We will concentrate on a particular type of second-order
characteristic, the so-called K-function, cf. Stoyan et al.
(1987) and Stoyan & Ohser (1982). Let vg denote the d-inten-
sity of particles, i.e. the total d-volume of particles per
unit volume reference space. In particular, with standard ste-

reological notation,

vy = N, vy = Ny
v;'=LA v§=JV
v§=AA D§=SV

”g=vv

Then, the K-function K4 of the d-dimensional particles with

respect to the reference points is defined by
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(-
d =
v Kd(R) = EO(.E

d
n 2 Ty lSRIN (¥5)) (2.1)

where Eo is the mean operator under the Palm distribution of
wl w.r.t. wo, I denotes indicator function and Rg denotes
d-volume in R™. The quantity vg Kd(R) can be interpreted as
the expected total d-volume of particles sitting at a distance
at most R from a typical reference point.

If we let 0, = w"/z/r(§+1) be the volume of the unit
ball in Rn, then

v3(K, (R,) -k, (R))) /0 (RD-RD) (2.2)

can be interpreted as the local d-intensity for particles at a

distance between R and R from a typical reference point.

1 2
If Yo and v, are independent, the local d-intensity equals
the global d-intensity vg.

3. THE MEASURE DECOMPOSITION

It is possible to construct an estimator of the K-function
for d-dimensional particles based on measurements on or in the

n (a p-dimensional linear

neighbourhood of a p-subspace of R
subspace of m“), if d+p-n 2 0. Some of the estimators are
baéed on measurements on a p-subspace, containing a fixed
r-subspace, 0 {r < p. These can be applied under the less
restrictive assumption that the distribution of the particles
are invariant only under rotations which keep the r-subspace in

question fixed.
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n

Let Lp(r) denote a p-subspace of IRn, containing a
fixed r-subspace, 0 ¢ r ¢ p £ n. In particular, Li(O) is a
line through 0 in the plane and

L3 = line in R°3 through ©

1(0)

Lg(l) = plane in R3 containing a fixed line

3 _ . 3

L2(0) = plane in R through 0,
3
L2(0)

3 3

Fig. 2. Parametrization of ¢3 ¢ and

1(0)" T2(0) 22(1)'
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. n o
cf. Fig. 2. Let gp(r) be the set of all Lb(r) and let
dL;(r) be the (differential) element of the measure on Y;(r)

which is invariant under rotations in R"™ which keep a par-
ticular r-subspace L?(OO)' say, fixed. The measure is unique
up to multiplication with a positive constant and it is here

scaled such that

sfen dLg(r) = Oppt Tneps1/%1 Ty
p(r)
= d(n,p,r) (3.1)
say, where
o = 2121 (n/2) (3.2)

n

is the surface area of the unit ball in R". 1In particular,

3
dLl(O) = sinB d6 d¢

3
dLZ(l) = d¢

3
dLZ(O) = sinB d6 d¢ ,

where the notation is as shown in Fig. 2.
The estimators of the K-functions are based on a geometric

measure decomposition which will now be presented. Let Yj be
n

a dj-dimensional bounded manifold in R, 3j = 1,...,q. Let
LE(OO) be a fixed r-subspace and let p = g+r. We assume that
dj-n+p 20, j=1,...,9. In section 4, we shall consider the

case where the Y's are particles and thereby random sets. For
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the moment, they are regarded as non-random. Let yj:l € Y., J

=1,...,9.

The superscript of yj

J
d.

J is used to indicate the

dimension of the space within which the point is regarded to

d.
lie. For brevity, we write, when convenient, dyj] instead of
d. d.
xnj(dyjj) in what follows. Consider the mapping
d d
1 q n
(V) ree e ¥y D) > Lo 0y (3.3)
n dl dq
where L is the p-subspace spanned b ooy *and
p(T) p P p Yy ¥y .Yq r
n 1 1 i = = = =
Lr(OO)' For an illustration with n = 3, g 1, r 1, p
2, d1 =d = 1, see Fig. 3. An explicit expression of the
Jacobian of this mapping can be found, cf. Jensen and Kiéu
(1989). Related results have been given by Zahle (1989). The
result is
q d.:p q d.
—(n_p)( J J
Yyre-en¥Yy) I G (ys) I dy.
p(r) 1 9 4=1 D 37 4= I
q d.-n+p n
= 0 dy. dL . (3.4)
j=1 73 p(r)
Here, vp(r) is p! times the p-volume of a simplex spanned
d1 o n
by Y, ,...,yq and r orthonormal vectors in Lr(OO)' In
particular
Vl(O) = distance of Yy to the origin
vz(l) = distance of Yq to Ll(OO)
v2(0) = 2 x area of triangle with vertices O, Yir Yy
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0 ¢

\\_/ n
Lp(r)

\

v

Fig. 3. TIllustration relevant for the geometric measure

n
Lr(OO)

decomposition.
v V2(0) = 2 x area of triangle
2(1)
< >e Y
1 A Y,
Y1
V1(0)
0% 0
L1(00)

Fig. 4. The v-factors.
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d.:p
see Fig. 4. Furthermore, an (yj) is the (n-p)-volume of the
projection onto Lb(r) of a unit cube in zj n (T. an(r))
where Tj is the tangent space to Yj at yjj. In Table 1,

values of Gg7p(y) are given for all interesting cases in R>

and R>. Note that the G-factors depend on the local geometry
of the manifolds considered and require local n-dimensional
measurements.

The measure decomposition will be used in two different
ways. In the first case, we let r = p-1 and g = 1. Only one

manifold Y of dimension d, say, is then involved. We get

-(n-p) d;p a _ d-n+p

Vo(p-1) (Y)C, T (¥)dy dy de(p 1) (3.5)
or

n
Ad(y) = I m(Y,L? ) p(p-1 (3.6)
n oh p(p-1)" d(n,p,p-1) )
p(p-1)

where

_ _ d:p d-n+p
m(Y Lp(p l)) = d(nlplp 1) an( p{)p 1) (Y)/G (Y)dy ‘(3'7)

p(p-

Therefore, if Y is a random set with a distribution invariant

under rotations that keep Lp -1(00) fixed, the distribution of
n

m(Y, P does not depend on L . In that case

¥rLp (p-1)) P P (p-1) '

An(Y) and m(Y, Lp(p 1)) have the same first-order properties.

Therefore, unbiased stereological estimators of the K-function,
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Table 1

The factor Gg7p: Planar case

a\P 1 2
1 sin a,, 1
2 1 1
a = angle between tangent line of planar curve and line

11

. probe.
{

The factor Gg;p: Spatial case

a\P 1 2 3
1 - sin a5 1
2 sin a4 sin sy 1
3 1 1 1
a5 = angle between tangent line of spatial curve and plane
probe
ahy = angle between tangent plane of spatial surface and line
probe
a,, = angle between tangent plane of spatial surface and plane

probe

25
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cf. (2.1), can be constructed by replacing Ag(Yj) with the

measurement m(Y L cf. Section 4.

p(p-1) )
This approach does not cover all cases of interest. For
instance, the estimation of the K-function for 2-dimensional
particles in R3, based on measurements on an arbitrary plane.
For simplicity, we will concentrate on constructing esti-
mators based on measurements at L2(0) This correspond to p

=2 and r =0, cf. Fig. 2. Let Y, =b(0,1), the unit ball

in Rn, and Y, = Y, a bounded manifold of dimension d2 = d.

Then, we get from (3.4)

-(n-2) d;2 n .d
Va(o)  (Y1:¥5)G T (Yy)dyy dy,

d-n+2 n
dy1 dy2 dLZ(O) . (3.8)
Since w;1 I dy? = 1, we have
b(0,1)
d _ |
AL(Y) =T dy,
Y
=otry ay? ayd
Y b(0,1)
=o s s
$2(0) Yan(o) b (0, 1)ﬂL2(0)
n-2 d;2 d-n+2 n
n—
T (==)
2 n-2 d-n+2 n
= — 7 v ¢4 d daL
D=1 o0 yneD 1(0) (Y2)/64 "2(v,) avy 2(0)

"2 ~2(0) 2(0)
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ar?
n 2(0)
=»£n m(¥.L;y 0)) d(m,2,0) (3.9)
2(0)

where
n _ n-2 d;2 d-n+2
mYiLa(0)) = “n-2 §on T1(0) ¥2)/6n T (¥)dy; .
. 2(0)
(3.10)
Therefore, Ag(Yj) can be replaced by the measurement

m(Yj'Lg(o)) when constructing estimators of K-functions on the

basis of an arbitrary planar section.

4. ESTIMATORS OF K-FUNCTIONS

Any of the estimators of K-functions are obtained by first
collecting a sample of reference points and then, with each
sampled point as origin, determining an estimate of the total
d-volume of particles at a distance at most R from the refer-

ence point in question. The estimate can be based on informa-

tion at a p-subspace Lg(r) containing a fixed r-subspace,

0 { r < p, provided that d+p-n > 0.

For 4 2 1, we can use the measure decomposition de-’

scribed in the previous section. If we sample all reference

points in a box B, we have the following estimate of vg x

Kd(R):

-1 n ‘
N x.gB 3 I(lyj-insR)m(vj,xi+Lp(r,) , (4.1)
i Jj : .
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where N is the number of sampled reference points and
m(Yj,xi+L;(r)) is an estimate‘of the d-volume of the particle
Yj, based on measurements at the p-flat xi+Lg(r) through
X In all cases of practical interest, the actual form of the
measurements can be derived from (3.7) and>(3.10) and is pre-
sented in Table 2 and Table 3.

Many of the cases described in Table 2 and Table 3 have
previously been treated separately in further detail: Stoyan
(1981) (Table 2a), Jensen & Gundersen (1987) (Table 2a,b and
Table 3c,f), Cruz-Orive (1987) (Table 3f,g), Stoyan (1984)
(Table 3a).

It still remains to treat the case of O-aimensional par-
ticles which is not covered by the measure decomposition from
the previous section. The solution to this problem is due to
Evans, cf. Gundersen et al. (1988). For simplicity, we will
concentrate on the spatial case n = 3.

Let us first present a simple result about sampling points
by means of two parallel planes, a distance h apart, viz. a
disector, cf. Sterio f1984). The points (yj} are for the

moment regarded as fixed. One of the planes in the

3
2 (r)
disector is either an isotropic random plane through the origin
or a vertical random plane through the origin depending on
‘whether r = 0 or 1. A particular point y is sampled if it

lies between the two plénes. It is easy to show that the samp-

ling probability is

isotropic disector: p h/[zdo(y)], h < do(y)

1/2 , h > dg(y) (4.2)

y.h
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Table 2. Estimates of the d-volume of a particle, based on
measurements at p-flat containing a fixed r-flat. For details,
see Section 4.

Planar case

a\PT | p=1, r=0
line
m a
1 m I d,,/sin a
k=1 0k k
a M b
2 5= I ho(y,_,v,.,)
2 k=1 2 *k-"*k+
a: The intersection points between a one-dimensional particle

Y and a line X+Li(0) are numbered by index Kk, dok
denotes the distance between the k'th intersection point
and the reference point x and oy the angle between the
tangent line to the particle and the 1line x+L§(0). In
the general formula (3.4), the distances are denoted by

V.

b: The intersection between a 2-dimensional particle and a

line x+Li(0) is divided into intercepts

2 M

YN (x+L
The measurements depend on the function h2 where for

general n

Iy_-xln+ly+-x|n, if x is between
y. and y,
h (Y_.Y,) =

| ly_-x|"-]y,-x|"|, otherwise
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Table 3 (continued)

a,b,c:

g,h:

The intersection between particle and probe has dimen-
sion 0. The intersection points are numbered by k.

The distance from the k'th intersection point to a

‘reference point x is denoted dok’ while the distance

to a fixed line is denoted dlk' The notation for the

corresponding angles can be found in Table 1.

Only integral representations are available. Here,
di(y) denotes the distance from y to a reference
point or to a fixed line, depending on whether i =0
and 1. The nota-tion for the angle can be found in

Table 1.
The notation is as for the planar case b.

The notation for the distance is as for case d and e.
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vertical disector: py h = Arcsin(h/dl(y))/w, h ¢ dl(y)
’

=12, h>d4d,(¥) . (4-3)

where the notation for the distances do(y) and dl(y) is as
for Table 3.

This simple result can be used to estimate the K-function
of the point process (yj) with respect to the point process
{xi). We therefore change to the model-based approach. As in
the previous cases, we first collect a sample of reference
points and then, with each sampled point as origin, determine
an estimate of the total number of yj's at a distance at most
R from the reference point in question. This estimate is ob-
tained by sampling all points between the two planes of a di-
sector centered at the reference point and summing up the in-
verse sampling probabilities. The final estimator of Ny Ky (R)
is

-1
yj—xi,h

Ntz I(ly;-x;1<R) p

J
xieB yj sampled

at x.
i

. (4.8)

REGULARITY CONDITIONS

The present paper has been written with the purpose of
presenting a unified theory of second-order stereology in an
informal way. For that reason, the emphasis has not been on
technical matters.

It is, however, important to emphasize that regularity

conditions are needed on the sets involved.First of all, the
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sets are assumed to xg-rectifiable and Ag-measurable, cf. Fe-
derer (1969). This assumption ensures that a d-dimensional
tangent space can be defined almost everywhere. Secondly, we
assume that the mapping (3.3) is well-defined and that the
Jacobian (3.4) is non-zero almost everywhere. A more detailed
discussion of these regularity conditions will be presented in

Jensen and Kieu (1989).
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