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ABSTRACT

The mathematical bases and the main features of classic and asymptotic fractal
formalisms are explained, together with a review of methods for the estimation of the
fractal dimension and of other quantities.

The main applications of fractal geometry in the analysis of images from cell and
tissue biology are reviewed.

Finally, the relationships between mathematical morphology and fractal geometry
are explored, starting from a new equation which links the two theories. This represents a
basis for low resolution segmentation and texture recognition in amflcaal vision. Possible
relationships with human vision are discussed.
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INTRODUCTION

Fractal geometry allows an objective description of many types of hitherto
mathematically undescribable natural objects (e.g. Mandelbrot, 1982; Rigaut, 1984,
1987b; Feder, 1988; Peitgen & Saupe, 1988).

Fractal theory represents also a basis for the creation of synthetic images of all
sorts (e.g. Mandelbrot, 1982; Barnsley, 1988; Peitgen & Saupe, 1988).

Finally, since their recent marriage with chaos theories (e.g. Barnsley, 1988;
Peitgen & Saupe, 1988) fractals can often be considered as attractors in a dynamical
system. Synthetic images which imitate complex natural scenes can be obtained as fractal
attractors of a recurrent procedure (Barnsley, 1988). The formalism of neurocomputers
(e.g. Kohonen, 1988), which offers an attractive basis for artificial and human vision,
includes a chaos/attractor paradigm.

A short review of applications of fractal geometry to cell and tissue biology wnll be
offered. The reader is referred to Rigaut (1987b) for applications to other aspects of
biology. Simple mathematical bases will be given (for more rigorous treatments, cf. e.g.
Mandelbrot, 1982; Falconer, 1985; Barnsley, 1988; Feder, 1988; Rigaut, 1990).

* Keynote lecture presented at ECS 5, Freiburg.
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FRACTAL GEOMETRY IN CYTOLOGY AND HISTOLOGY

The classic fractal concept

An empirical equation represents the basis of the concept. Richardson (1961)
discovered that coastline lengths (B) produce linear log-log graphs, with a negative slope,
when plotted versus the length (n) of a yardstick representing an inverse measure of the
resolution. Mandelbrot's (1967) interpretation of Richardson's empirical relationship
forms the basis of fractal geometry. Let B11 be the coastline's length at resolution n", and

B and D be positive constants. The empirical Richardson-Mandelbrot equation is then
1-D
B, ~ Bn'P . (1)

Let the yardstick be a divider, stepping along the coastline with different step-lengths (n)
and let NTl be the number of steps covering the coastline. As EBn = N11 n, B~ Nn r\D .

Therefore, B is a length when D=1. When D € (1, 2), B can be understood as being a
constant measure of Bn in dimension D (Mandelbrot, 1967). The coastline is then fractal,

with fractal dimension D (Mandelbrot, 1982). The coastline is smooth if D=1; its
apparent roughness increases with D.
In a more general way, if Dy is the topological dimension,

M, ~ nnPrP (2

is the generalized Richardson-Mandelbrot equatioh, where M11 is the length of a curve
(Dg=1) or the area of a surface (Dy=2) and . is a constant measure of Mn in dimension D.

There are many methods for the experimental determination of D. With most of
them, a set of measurements of a curve's length (Bn)’ using different yardstick lengths

(n), or different resolutions, is required. An estimation of the fractal dimension (D) of
the curve is given by the slope (1-D) of the Richardson-Mandelbrot plot of Iog(Bn)

versus log(n).
A simple method consists in evaluating Bn at different microscope magnifications.

The inverse of the resolution is then used instead of 1 (Paumgartner et al., 1981; Rigaut,
1984).

With the divider stepping method (Richardson, 1961), the boundary length is
estimated by stepping along the object's contour. The results obtained by divider stepping
are similar to those obtained by the magnification method (Rigaut, 1984). The divider
stepping polygonation, which is not so easy to use with an automated image analyser
(Rigaut, 1984, 1987ab), is nevertheless preferable to the polygonation by successive
vertices spaced by equal numbers of pixels (Schwarz & Exner, 1980). Tricot et al.
(1987) have proposed another method, based on intersecting the contour with a fitting
curve.

The dilation method (Flook, 1978), based on an idea from Cantor (cf. Mandelbrot,
1982) is straightforwardly implemented in automated image analysers. The Minkowski
(1901) dimension, extended by Bouligand (1928) to non-integer values, offers a sound
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mathematical basis to this method. The practical application is based on successive
dilations of a curve by an isotropic structuring element of diameter n , centred on
successive pixels of the digitized curve. Then, Bn ~ n'1 o , where o is the area of the

Minkowski 'sausage' obtained by dilating the curve. Other methods, using linear
structuring elements or the convex hull, have been proposed (Tricot et al., 1987).

The box method is simple to use (e.g. Feder, 1988). It can be combined with the
magnification method (Morse et al., 1985). The box counting theorem (Barnsley, 1988)
offers a mathematical basis to this method. The image plane containing the curve is
tesselated by squares of side m , using a randomly positioned grid. The number (Nn) of

squares intersected by the curve replaces the number of divider steps, and B11 ~ N11 n.

39

The censored intercept method (Flook, 1982) is an elegant variant of the box

method. Based on the line grids used in stereology (Weibel, 1979), it consists in
counting, when there are several intersections of the curve with a line segment, only
those intersections which are separated by a distance larger than a given value of n . Then,
BnA = (n/2) InL' where InL is the number of censored intersections per unit line length.

. Empirical fractal laws other than equation (2) have been discovered, such as the
area/perimeter (Lovejoy, 1982) and number/size (Kor¢ ak, 1938) relationships. For
the former, D can be estimated by slit-island analysis (Mandelbrot et al., 1984).

Pentland (1984a) has shown that, under some assumptions of homogeneity, the
two-dimensional projection of a three-dimensional Brownian fractal surface produces an
image whose grey tone function is fractal.

The variogram (Matheron, 1965) may be used to estimate the dimension of a
fractal Brownian function (Mandelbrot & Wallis, 1969). For such a function, the Fourier
power spectrum can be used to estimate D (Mandelbrot & Van Ness, 1968).

The first works using fractal geometry in cell biology were those of Weibel's group.
Weibel presented some preliminary results in 1979 (fractal dimension of 2.17 for the
human lung alveolar surface). Paumgartner et al. (1981) estimated mitochondrial
membrane surface area densities (Syy) stereologically in electron microscopy, at different

magnifications. They concluded that mitochondrial membranes are fractal, but only up to a
‘critical resolution’, above which no additional structural complexity can be observed.

Fractal geometry offers a model for the analysis of the discrepancies observed
between the results of stereological studies (review in Rigaut, 1987b).

Mandelbrot (1982) has proposed several fractal models for the branching of lung
bronchi, for capillaries in tissues and for -the surface of brain folds. A fractal model for
the vascular system of the lung has been proposed (Lefévre, 1983). The electric system
of the heart might be based on an anatomically fractal conducting tissue (Goldberger et al.,
1985). Fractal trajectories have been observed for the movements of spermazoa
(Schoevaert-Brossault & David, 1984) and for the growth of embryonic axons (Katz,
1985; Katz & George, 1985). :

Th ic fr lcon

The contours of most natural objects, both in biology and in materials science, do
not display ideally fractal characteristics (Gelléri, 1982; Rigaut et al., 1983b; review in
Rigaut, 1987b). Most object contours are ideally fractal only asymptotically, at lower
resolutions (Rigaut, 1987b). At higher resolutions, the boundary length (or surface
area) tends towards a maximum, and this fits real data better than by using a ‘critical
resolution’ (Rigaut, 1984). Many authors, invoking the possible
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existence of 'multifractals' (Kaye, 1978), have tried to adjust concave log-log plots with
broken line segments. The subjectivity of such fittings has drawn much criticism (review
in Rigaut, 1987b).

The departure of experimental results from classic fractal geometry led Rigaut
(1984) to formulate the asymptotic fractal (A.F.) concept, inside which fractality is a
Gestalt-like (Arnheim, 1973) ‘'ideal' that most object forms and textures tend to
approach (Rigaut, 1986, 1987b, 1988D). The A.F. model (Rigaut, 1984) displays two
asymptotic behaviours when the resolution is varied, tending towards a maximum value at
high resolutions, and towards a fractal behaviour at low resolutions. The new concept
allows for an asymptotic fractal dimension.

The underlying mathematics stem from an equation borrowed from enzymological
biochemistry (Hill, 1910). The use of this equation in our context is empirical (this is
also the case for the Richardson-Mandelbrot equation). Its choice, however, lies upon a
conjecture: that cooperativity effects, which represent the basis of the interpretation of
the original version of the equation in terms of kinetic behaviour of allosteric enzymes
(Monod et al., 1965), are also relevant in our context. Non-linear dynamics, such as that
observed in cellular automata systems (Wolfram, 1984), could represent an ontogenic
explanation for the structure of natural objects. Some considerations from geostatistical
theory (Rigaut, 1987b; Rigaut et al., 1987b) might also offer some indirect
justifications for this equation.

The A.F. equation (Rigaut, 1984) is

My ~ [+ )PPt oMy (3)

where M, is the maximum value of Mn ,and L (n = L when M11 = M,/2) are positive

constants.
Whenn — 0, M,n - M. When M, — o, o0r whenn — e, then M'ﬂ - unDT-D‘

akin to the generalized Richardson-Mandelbrot equation (2), with p = My = LD-D+ M, -
Therefore, the A.F. model tends towards the 'ideally fractal' model when M, and/or m

become large (n >> L).
The estimation of the parameters of the A.F. equation is .made by using a linearized

expression (Rigaut, 1984): either Mn'1 = (M LD'DT)'1nD'DT + Mm'1 , or

|og[Mn'1(Mm-Mn)] = (D-Dy)log(n) - (D-Dy)log(L)

The log-logistic equation, which bears a clear relationship to our A.F. equation, has
been used by Geliéri (1982) to fit the concave log-log Richardson-Mandelbrot plots he
observed experimentally in the study of gel pores. This equation, however, includes a
minimum asymptotic value for Mn . thus differing from our A.F. equation (3) by a change

of coordinates, which makes the asymptotic tendency towards an ideal fractal form at'low
resolutions impossible to evaluate.

Mandelbrot (in Rigaut, 1984) proposed another empirical equation, for concave
log-log curves, which would bear some analogy with the Zipf-Mandelbrot law
(Mandelbrot, 1953) in linguistics. However, no theoretical inference can be drawn from
the use of such an equation in our context.

Underwood & Banerji (1986) have proposed another empirical equation for
non-ideal fractals observed in quantitative fractography. This equation was chosen to fit
reversed sigmoidal log-log curves (whose tails at lower resolutions might, in fact, be
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artefactual). It does not lead to convincingly linear log-log plots, especially at high
resolutions (see Fig. 4 in Banerji, 1987). Finally, its behaviour is difficult to analyse in
terms of fractal theory.

The A.F. equation (Rigaut, 1984) allows remarkably precise fittings of
experimental data from all sorts of objects, natural or man-made. The asymptotic fractal
concept has also been used in petrophysics (Pape et al., 1987) and in metallography
(Marchionni, personal communication, 1987).
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Fig. 1 (a): Richardson-Mandelbrot log-log plot for the iung alveolar Sy versus the length
of the (divider stepping) yardstick representing the inverse of the resolution. Premature

newborn rabbits, controls (badly inflated alveoli) or surfactant-treated (well-inflated).
The asymptotic fractal tendency at low resolutions is clearly visible.
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The asymptotic fractal concept has led to interesting results on the structure of
lung alveoli (Rigaut, 1984, 1987b; Rigaut & Robertson, 1987; Rigaut et al., 1983b,
1987a). Neonatal rabbit lungs, badly- or well-inflated, were studied by automated image
analysis (Rigaut et al., 1983a; Rigaut & Roberison, 1986), allowing the estimation of
many stereological parameters, including surface area density, average integral mean
curvature and inflection point-related quantities, at different resolutions. It is impossible
to analyse the distribution of experimental surface area densities versus resolution by
classic fractal theory, as the Richardson-Mandelbrot plots produce invariably concave
curves (Fig. 1a). On the opposite, the A.F. equation fits remarkably well the data (Fig.
1b). The estimation of (asymptotic) maximum surface area densities, independent of
resolution, is interesting for future applications of stereology in biology.

The L constant and the (asymptotic) fractal dimension (D) allow a (highly

significant) separation between animals with badly-inflated alveoli and animals with
well-inflated (surfactant-treated) alveoli. The maximum total alveolar surface area is
constant, independently of whether the lungs are well-inflated or not.

The average integral mean curvature of the alveolar surface increases with the
resolution, but reaches a maximum, asymptotic value. It remains constant inside a certain
range of resolutions (3.5 < h < 9 um), corresponding .to alveolar radius values
(estimated by Laplace's law) between 65 and 150 pm. These figures are in agreement
with alveolar sizes, respectively for badly- and well-inflated lungs.

log({Svm-Svh)/Svn)
A

Fig. 1 (b): Hill log-log plot for the Asymptotic Fractal model, on the same data as Fig.
1(a); controls (black symbols) and surfactant-treated (white symbols); linear
regression lines (all correlation coefficient are > 0.99).
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We have derived (Rigaut et al., 1987a) a new stereological quantity, the average
integral mean curvature of saddle surface asymptotic lines (Kog), i.e. the integral mean

curvature for saddle surface asymptotic lines (Ko) (DeHoff, 1981), averaged over the
whole reference surface (S). We have shown that

KGTIS'. = (n/2) InB“ , ( 4)

where InB is the density of inflection points (I) per object boundary length (Bn)' for a
n
given value of n , and K"nS is the value of Kog for this value of 1 .
n
Therefore, KcnS can be estimated from the inflection point density of alveolar
n

contours. The lung, which displays an A.F.-like behaviour in terms of the total alveolar
curvature (cf. supra), shows an ideally fractal behaviour in terms of K°nS . The values of
n

KcnS , at any given resolution, are the same in the animals with badly-inflated lungs and
n

in those with well-inflated lungs (Fig. 2). Inflating the lung pushes apart the saddle
surfaces without deforming them. Saddle surfaces might represent a lattice of fixed
‘anchor’ points, inside a self-similar fractal system (Rigaut et al., 1987a).

9.5

log (Ko~ /S)

E | 8.5

E E 7.5

log (ty)

Fig. 2: Log-log plot of the average integral mean curvature of saddle surface asymptotic
lines for lung alveoli, versus the divider stepping length. Means and S.Ds. for all control
and treated animals (cf. Fig. 1a).
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FRACTALS, MATHEMATICAL MORPHOLOGY AND VISION

Computer vision and human vision

The development of computerized image analysis is hampered by the difficulty of
segmenting scenes. There is no general theory of segmentation, although some theoretical
considerations may offer a rational basis for a choice among methods (Serra, 1987).
Moreover, present methods for artificial vision refiect the rigidity of our concepts about
computers (Frisby, 1979).

it is tempting to abandon the clumsy methodology we use at present and try to
imitate human vision instead, considering its incredible efficiency and versatility. Alas,
we do not know much about the mechanisms of human vision (Sutherland, 1986).
Recently, however, some ideas about possible relationships between vision and fractals

have started to appear.

man vision fr. |

The fractal Brownian model allows an accurate description of the effect of changes
in resolution on most homogeneous textured regions encountered in natural imagery
(Medioni & Yasumoto, 1984; Pentland, 1984a). Natural textures seem to fall into a few
categories only (Stevens, 1974). Our vision system might be adapted to the task of
spotting efficiently such textures (Pentland, 1984ab, 1986). There is some evidence in
favour of a spatial-frequency perception of texture in human vision (Richards & Polit,
1974).

The hypothesis that there are two successive steps in vision tends to replace
nowadays the concept of a continuous gradient of sophistication (cf. Pentland, 1986). The
first step, corresponding to a low-level scene segmentation, is generally thought to be
pre-attentive. The second step would correspond to inference-based analyses, including
high-level segmentation. This has been expressed by Gestalt psychologists, who have used
the concept of Pragnanz to explain the pre-attentive phase of vision (Arnheim, 1973).

We are dealing with this low-level step when we consider fractal geometry as a
possible framework for segmentation. The idea is based on the fact that surface textures
show fractal characteristics, at least inside a certain range of resolutions. The prevalence
of such surfaces may be explained by analogy with Brownian motion (Pentland, 1986).
Computer-produced surfaces which look most natural are indeed fractal Brownian (e.g.
Peitgen & Saupe, 1988).

Under reasonable assumptions, the projection (two-dimensional image) of a three-
dimensional fractal surface is also fractal (Pentland, 1984a). Most grey tone functions
from natural textured objects display fractal characteristics (Rigaut, 1988b).

Serra (1987) expressed the opinion that vision might be based on mathematical
morphology-like operations. Leonardo da Vinci (cf. Kuény, 1983) had already proposed
the idea that seeing is transforming. Pentland (1985) proposed a type of image
transformation (based on double band-pass filterings) which seems physiologically
plausible for the evaluation of the fractality of a texture by the brain.

Our works show that simple image transformations based on mathematical
morphology allow an evaluation of the fractal dimension of the grey tone function in.any
region of an image (Rigaut, 1987a, 1988a, 1989). A combination of mathematical
morphology operations with fractal geometry represents a plausible model for
pre-attentive vision. Grey tone operations can indeed be understood in the context of a
recursive retinal mechanism, the excitation of each successive cell being. accompanied by
the inhibition of surrounding cells.
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Medioni & Yasumoto (1984) and Pentland (1984a, 1986) have expressed the idea
that it might be feasible to achieve low-level image classification by evaluating the fractal
dimension of the grey tone texture. Pentland (1984a) has indeed obtained some results by
evaluating, in the Fourier domain, the fractal dimension of the grey tone function in
different regions of an image.

Our model allows to find such regions through simple image transformations. It
consists in searching for regions in which the function ¢(x, y), which defines the grey
tone image, can be represented, inside a certain range of resolutions, by a fractal surface.
The scheme is based on the M.I.F. (Mathematical morphology and Ideal Fractals’) equation,
whose derivation stems from both mathematical morphology and fractal geometry (Rigaut,
1987a, 1988a, 1989):

Ay ~ kP, ()

where K is a constant and

8, = Volvx PF} - Volwx yOF,) | (6)

where F11 is a disc-shaped planar structuring element (Serra, 1982), of diameter n and

area A{Fn}’ and g (x, y)® F11 and Y (x, y)O F11 are the sub-graphs (Serra, 1988) which
result, respectively, from the dilation and from the erosion by F11 of the sub-graph

Y (x,y) of &(x,y); Vi) is the Lebesgue measure (volume) of sub-graph {-} inside a
quadrat Q, of area A{Q}; the centre of F11 is inside Q and A{Fn} << A{Q}.

The M.LF. equation allows, in log-log form, the simple computation of D from the
grey level values of a series of images resulting each from the subtraction of an eroded
image from a dilated one, having used .a series of values of n . Quadrats of varying area
must be used in the search for regions of a desired type. The search may be organized in a
systematic way, but constrained iterations are preferable (Rigaut, 1988a). Our
algorithm is still much too slow for routine applications.

The M.I.F. model is only valid inside specific ranges for the value of n . Grey tone
surfaces are only 'ideally' fractal inside a certain range of resolutions. This has also been
noted (Peleg, 1983) for Brodatz (1966) textures. Therefore, we have derived the M.A.F.
(‘Mathematical morphology & Asymptotic Fractals') model (Rigaut, 1990), which
combines the A.F. and M.I.F. models:

Ay~ [+t nPbrytc g (7

where C is a constant. This formula has two asymptotes: when n — 0, A11 —+ C 7, and,

when N = o, An — DDr ¢ yDrD+1
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The M.A.F. model is experimentally verified in all the natural textures we have
analysed. A sufficient range of values produces the concavity of the log-log graph which is
expected in the M.A.F. model, with a slope of ~ 1 for the lowest values. The position of the
experimental curve is identical at different magnifications, as long as some of the smaller
objects whose grey tone texture is fractal do not vanish altogether by lowering too much

the resolution.
An application on a section from a newborn rabbit lung (badly inflated), at three

different magnifications and using, for each of them, seven sizes for the structuring
element (3 x 3 to 15 x 15 pixels), is shown in Fig. 3. The asymptotic slope forn— 0is

equal to 1 and that forn — 0 allows to estimate D = 2.50 . We use AnA here, to render

the M.A.F. equation invariant to changes in reference area (A).

A
log( &A/A) gd
50 4 ODA
P
‘-OJ
DO
45 4 A
o
0
.0 A 2.0 pix/pm
4.0 + A
025 pixl}lm
o O 31 pix/pm
(e}
—35 + + + + !
0.0 0.5 1.0 1.5 2.0 2.5

log(f})

Fig. 3: Log-log plot corresponding to the M.A.F. model (cf. text).

We have experimented with our M.I.LF. and M.A.F. models on numerous types of
natural objects. Practically all grey tone functions we have explored yielded M.I.F.-like
fractal characteristics for well-defined objects, inside specific ranges of values for q
(which the M.A.F. model helps to find). Examples of object segmentation in computerized
scene analyses of histological sections, from the lung and the liver, are shown in Rigaut
(1987a, 1988a, 1989). Fig. 4 shows an example of the use of the M.I.LF. model.

The M.LF. model should aliow some further progress in the domain of textural
studies. The fractal dimension of the grey tone surface (and the other parameters derived
from our model) can be used in the classification of textures (Rigaut, unpublished results




ACTA STEREOL 1990; 9/1

on nuclear chromatin). This represents a new development in a field which has been
characterized by the quasi-exclusive use of co-occurence matrices (Haralick et al.,
1973), based on Julesz's (1965) early ideas on pre-attentive texture perception
through global second-order statistics.

Another possible future development is the generalization of our model to three-
dimensional (3-D) images. The 3-D version of the M.L.F. equation is mathematically
straightforward. We are currently studying the feasibility of segmenting, through a 3-D
version of our approach, nuclei in 3-D images obtained by laser scanning confocal
microscopy on thick tissues (Rigaut et al., 1988).

Serra has proposed (1988) a method for the estimation of the Minkowski (1901)
dimension, also based on mathematical morphology, but using a spherical ('rolling-ball’)
structuring element G-11 of diameter n (Sternberg, 1986). The method is based on a

derivation by Minkowski (1901). With our notation (k is a constant),
17 Volw DG} - Vol (x. YOG = & oD, when n —o0. (8)

Rolling-ball transformations are not easy to implement in an image analyser. Moreover,
Serra's method is based on the extrapolation for .q — 0, which might yield less precise
results than our model (e.g. it is impossible, on a square lattice, to find an acceptably
approximated spherical structuring element of width < 5 pixels); Serra (1988) suggests
that, in practice, different magnifications could be used.

If a function is fractal Brownian, lhe following equation (Mandelbrot & Van Ness,
1968) is satisfied:

PUIISXIH [o(x)-6(x+8x)])} < 8) = F(9) , v (9)

where p(+) is a probability, F(9) is a cumulative distribution function and H is the Hurst
exponent (cf. Mandelbrot, 1982), with H = 1-(D-Dy); ¢(x) and x can be imerpreted

as vector quantities, thus providing extension to ¢(x, y).

Under the assumptions of constant illumination and albedo, and of a Lambeman
surface reflectance function, the projection of a three-dimensional fractal Brownian
surface onto a plane produces an image whose intensity function is fractal Brownian, with
the same fractal dimension as that of the original surface (Pentland, 1984a). Therefore,
if the original surface corresponds to a real relief, its fractal dimension can be estimated
by using our M.I.F. model on a photograph.

CONCLUSION

Pentland (1986) states that "A theory of visual function that has no model of the
world also has no meaning” and that "Theories of visual function, therefore, are based on
models (...) of how the world is structured and of how this structure is evidenced by
regularities in the image". Heisenberg (1970) suggested that "The structures of our
minds may perhaps reflect the world's internal structure™. We- believe that there is a
strong coherence in a work based on studying first the real world through fractal models,
and then turning to the problem of human vision.

47




48

RIGAUT JP: FRACTAL MODELS IN BIOLOGY

section from an oesophagus cancer; (b): ‘image of D', hypo-median filtered (9x9, rank
45); D is evaluated by the M.I.F. model in systematic quadrats (8x8) and coded into grey

levels (0-255).

Fig. 4: Calibration: 7.6 pixels/um; (a): Original digitized image; Feulgen-stained
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Fig. 4: (c): ‘lmage of K', hypo-median filtered (15x15, rank 113) and contrast-
inverted; K (cf. equation 5) is evaluated in parallel with D (cf. Fig. 4b) and coded into
grey levels (0-255); (d): Segmentation of nuclei, obtained by a combination of optimal
values for D (2.05 to 2.33) and ¥, and binary closings. ’
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