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Introduction 

Consider random binary 2D sets whose structure evolves and gradually densifies by successive unions 

of simple geometric elements (square, disk, triangle, ...) or morphological transformations (dilation, 

closure, ...). Initially, the structures consist of isolated elements. Then, they gradually connect, as 

densification proceeds, till forming a single set covering all the space. When one structure evolves from 

a set with only isolated elements to reach a fully interconnected set, a "percolation transition" occurs 

which is expressed by an abrupt change from an "insulating" state to a "conducting" one (Clerc et al., 

1983). Then a question arises: “is there a structural feature that could make prediction of this 

percolation transition possible?” Percolation  is clearly related to the topology of the structure. Such a 

topology can be described by several attributes, among which the Euler-Poincaré characteristic (EPC) 

(Hadwiger, 1957) can be easily assessed. Accordingly, the aim of this work is to examine the possible 

links between the EPC and percolation thresholds. 

Simulations 

Densification is quantified by the area fraction occupied by the phase of interest (also called 

compacity). For each compacity, the topological parameters, N1 (1D EPC) and N2 (2D EPC), 

respectively related to the perimeter and the curvature of the interface between the two phases are 

computed... During the evolution of structures, the curves representing these parameters exhibit 

remarkable points such as extrema, zeros and inflection points. Therefore, we tried to find a 

coincidence between any of these remarkable points and the percolation threshold. The simulations 

are carried out on a hexagonal 2000 * 2000 grid. The simulations are of two types: random 

implantation of increasing numbers of points followed by dilations or closures and random 

implantation of increasing numbers of elementary units such as solid or empty squares, crosses, 

triangles... Examples of simulations are given in Figure 1. 

(a) (b) (c) 

Figure 1. Simulated structures: uniform implantation of hexagons (a), up triangles (b), mixture of half up and half 
down triangles (c). 
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Figure 2. Uniform implantation of hexagons on a hexagonal grid. Increasing the number of hexagons allows a 
progressive filling of the space during which a percolation transition is observed (upper curve). The topological 
evolution of the densifying structure is followed through its EPC (lower curves) as a function of the compacity. A 
coincidence is observed between the percolation threshold and the compacity attained at the maximum of N1. 
Note that it differs from the zero of N2. 
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Figure 3. Two progressive fillings of the space with triangles: uniform implantation of up triangles (T) and mixture 
of half up and half down triangles (Tud). For these two simulations, two different percolation transitions are 
observed (upper curve). As far as the topological properties are concerned (lower curves), these transitions 
correspond neither to the zeros of N2 nor to the compacity value of the unique maximum of N1 for which a single 
curve is obtained. 
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The percolation threshold is assessed using the proportion of phase of interest invaded by a geodesic 

propagation (Lantuéjoul and Beucher, 1981). The markers of the propagation are located on the left 

edge of the field and we also checked whether the right edge of the field is reached (percolation 

through the field). 

Results and Discussion 

When the hexagonal grid of the simulation field is progressively filled by points, the percolation 

transition is observed for a compacity equal to 0.5. This value corresponds to the maximum of N1, the 

zero of N2 and the inflection point of N2 (Jernot and Jouannot, 1993). The coincidence observed 

between the compacity at those points and that of the percolation threshold is also valid for a uniform 

implantation of increasing numbers of elementary squares: in this case, the compacity is close to 0.63 

(this is also observed using a square grid). The coincidence with the zero value of N2 is no longer 

observed when morphological transformations are performed on the set under consideration. This is 

illustrated in Figure 2 corresponding to dilated structures of points. Moreover, when the structures are 

made up with square boundaries, N2 exhibits only negative values and therefore the zero of N2 cannot 

obviously be linked to the percolation threshold. Nevertheless, it can be seen in Figure 2 that the 

percolation transition occurs close to the compacity of the maximum of N1. This link with the 

extremum of N1 in 2D space and the extrema of N2 in 3D space had already been observed for dilated 

or closed structures (Jouannot et al., 1995). But a counterexample can be found from two other 

simulations based on equilateral triangles. The first one is made up with increasing numbers of 

uniformly placed "up triangles" while the second one is made up with a 50-50 mixture of "up triangles" 

and "down triangles" (see Figure 1). An amazing comparison of these two simulations is presented in 

Figure 3. The same curve is obtained for N1 leading to a single maximum while two distinct curves for 

the percolation are associated with two percolation thresholds. Finally, we also have to reject the 

inflection point of N2. Although it could have been an acceptable candidate on the basis of all our 

results gathered in 2D space, it must also be discarded because the coincidence doesn’t persist in 3D 

space. From the equation of N3 (Jernot and Jouannot, 1993) one can check that the two inflection 

points of N3 do not coincide with the two percolation thresholds on a f.c.c. grid uniformly filled by 

points. 

Conclusion 

Surprisingly, these simulations allow concluding that the percolation threshold is not linked to any 

remarkable point of the curves reflecting the topological evolution of a structure. What can be inferred 

is then that there does not exist any direct link between percolation thresholds and the Euler-Poincaré 

characteristic. 
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