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Introduction
The presented work is motivated by a pharmaceutical issue. Indeed, the production of
drugs involves a crystallization process in solution depending on several parameters and
their quality is closely linked to its geometrical characteristics (size, shape, quantity ...).
Therefore, it is necessary to control the distribution of the “crystal geometry” during the
process. To meet this goal, an in-situ optical acquisition system provides images of the
crystal population crystals’ population, giving access to the projected particles during
the  process  (see  Figure  1).  These  images  highlight  the  overlapping  of  the  crystals
(caused  by  the  2-D  projection)  and  it  is  consequently  difficult  to  individualize  the
particles for further characterization. Therefore, after a binarization process [1] (see
Figure 1), the objective of this work is to investigate stochastic geometrical models so as
to  represent  these  binary  images  and  to  get  the  geometrical  characteristics  of  the
crystals.

Figure 1. Acquisition of an image of a crystals’ population and its segmentation.

Modeling and objectives
Several  materials  can be modeled by random sets.  In fact,  the heterogeneity  of  the
materials can be apprehended by a probabilistic approach [2],[3]. Especially granular or
fibrous media [4],[5] can be represented by unions of overlapping particles (the grains)
centered on random positions (the germs), thus giving rise to the germ-grain model.

Ξ=⋃x i∈Φ
xi+Ξ i

 
(1)

Where Φ  is a point process which generates the germs
x i , and where the grains

Ξ i  are convex random sets independent and identically distributed.

Notice that this definition assumes the independence between the particles  Ξ i and

their  positions  x i  there  is  a  more  general  definition  authorizing  the  correlation
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between  germs  and  grains  [6].The  proposed  approach  consists  in  representing  the
population of crystals by such a germ-grain model (Figure 2); that is to say that the point

process Φ  represent the spatial distribution of the particles centers and the convex

random sets  Ξ i  the particles themselves. The goal is to adjust the model to the real

data by matching measurements computed both on real and simulated images. The real
data are here obtained by an imaging acquisition system, meaning that we have only

realizations of Ξ∩W  where W is a bounded window, and we want to estimate the

characteristics of Φ  and Ξ0 .

Figure 2. Acquisition of an image of a crystals’ population, and realization of a geometric
stochastic model representing it.

To meet this objective, we focus on two points: firstly, we estimate the characteristics of
Ξ  from a realization of  Ξ∩W  [7], secondly we establish relationships  between

the characteristics of  Ξ and the local characteristics of the model  ( Φ  and Ξ0 ).

We also introduce an additional assumption: we assume the process Φ  comes from a

known type (Poisson process, Cox process ...). We will use the homogeneous Boolean

model, a germ-grain model in which Φ  is a homogeneous Poisson point process. This

model is widely used because we have an analytical formula for the Choquet capacity.

T Ξ (X )=1−exp (−λ E[ A(Ξ0⊕K )]) (2)

Several  methods  have  been  presented  in  the  literature  so  as  to  connect  the  global
characteristics of the Boolean model to the characteristics of the primary grain. In the
plane  and the  space,  the  Miles's  formulae  [8]  or  the  minimum contrast  method [9]
provide  theoretical  relationships  to  estimate  the  average  values  of  the  Minkowski
functionals of the primary grain from global characteristics. Generally, the primary grain
is assumed to have a known and deterministic shape, that is to say, the realizations of
the primary grain are homothetic. So as to estimate the variations of the scaling factor
from the expectation of the Minkowski functionals. For example, for a disc in the plane,
the  moments  of  the  first  and second orders  of  the  radius  of  the  primary  grain  are
respectively proportional to its average perimeter and its average area. However, if we
consider that the shape of the grain can vary, several issues remain unresolved: firstly
the Minkowski functionals of a random convex set are not enough to characterize its
shape and also their average will not provide sufficient information to characterize its
variations. For instance, for a Boolean model whose grains has a shape that depends on
1  
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several parameters (rectangle, ellipse ...); the estimation of geometric variations of the
grain is not straightforward. 
The proposed work provides estimators  of  the geometrical  variations of  the primary
grain of the Boolean model without any assumption concerning its shape.

Method and results
It’s well known that the second order moment of the area of the primary grain can be
expressed as the integral of the mean geometric covariogram [10]:

             E [ A (Ξ0 )
2 ]= ∫R2 γΞ 0

(u )du  
(3)

Where  γΞ 0
(u )=E [A (Ξ0∩Ξ0+u ) ]  is  the mean geometric  covariogram of Ξ0 .  Thus,

under  the  hypothesis  E [A (Ξ0 ) ]<∞  it  is  possible  to  obtain  an  estimator  for

E [ A (Ξ0 )
2 ]  from an estimator of  γΞ0

(u ) . In the special case of the Boolean model

the mean geometric covariogram can be obtain by the covariance CΞ(u) , also called

2-points probability function by the following relation associate to Miles’s estimator of
intensity.

γΞ 0
(u )=

1
λ
ln (1+

CΞ (u )−pΞ
2

(1−pΞ )
2 )

(4)

Where pΞ=CΞ (0) is the fraction area of Ξ . Let’s notice that the Boolean is stable

by convex dilatation; that is to say, for each compact convex set K   the random set

Ξ⊕K  is also a Boolean model of same intensity λ  and of primary grain  Ξ0⊕K

. Consequently for any compact convex set K  the quantities λ , E[A (Ξ0⊕K )]  and

E[ A (Ξ0 ⊕K )
2
]  are estimable. Especially, considering a family of homothetic convex

compact  sets   (rK )r>0  the  second  order  moment  of  the  area  of  dilated  grain

E[ A (Ξ0 ⊕rK )
2
]  is a polynomial function in  r , and can be expressed by Steiner’s

formula as follows:

 
E [ A (Ξ0 ⊕rK )

2 ]=E [ A (Ξ0 )
2 ]+4 r E [ A (Ξ0 )W 0,K ]+r2 (4 E [W 0,K

2
]+2 A (K ) E [ A (Ξ0 ) ] )+4 r3 A (K )E [W 0,K ]+r4 A (K )2

(5)
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where  W 0,K  is  the  mixed  area  between  Ξ0  and K  [11],[12].  The  quantities

E [A (Ξ0 ) ]  and E [W 0,K ]  can be estimated by the minimum contrast method [13] or

by the Miles’s formulae [6].   Consequently the quantities  E [ A (Ξ0 )
2 ] ,E [ A (Ξ0 )W 0,K ]

and E[W 0,K
2

]  can be estimated by a polynomial approximation of  E [ A (Ξ0⊕rK )
2 ] .

In practice the choice of the values of r  play an important role, and a precaution for

the edge effect must be taken into account; if Ξ (ω )∩W  is a realization of Ξ  in a

bounded windows  W ,  the  dilated  model  Ξ⊕rK  is  only  known on the  eroded

windows  W r=W⊖rK   and  its  realization  in  the  windows  W r  is

(Ξ (ω )∩W )⊕rK ¿∩W r .

The choice of the convex compact set  K  provides different characteristics of  the

primary  grain;  for  a  ball,  the  mixed  area  W 0,K  is  proportional  to  the  perimeter

U (Ξ0 ) ,  and for a segment oriented by  θ∈[0,2 π ]  , it is proportional to the Feret’s

diameter of Ξ0  in the direction θ . 

This method can be generalized to obtain nth order moments of
A (Ξ0 ) ,W 0,K

¿ ), using

n -points  probability  functions  (article  in  preparation).We  have  evaluated  the

performance of the proposed method for a disk and a segment by simulating several

realizations of a test model in a squared window 500×500 . The test model is isotropic

model with a point process intensity  λ=100/500×500  and with rectangular grains

whose side lengths are independent and follow the Gaussian distributions  N (40,10)

and N (30,10) .  The results are presented in Figure 3, where the relative errors on

the  geometrical  variations  of  the  grains  are  shown as  a  function  of  the  number  of
realizations.
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Figure 3.  A realization of the test model (a) and the relatives errors of the second order moments
of (area, perimeter) on (b) and of (area, Feret’s diameter) on (c).

Conclusions and prospects
A  method  has  been  presented  so  as  to  geometrically  model  and  characterize  a
population of crystals. It  provides estimators of the variations of  the primary grain's
morphological characteristics. Especially, using dilatation by a disk or a segment, the
proposed method can be used to better characterize the geometry of a primary grain
whose shape depends on two parameters (rectangle, ellipse...). We emphasize that our
method can be used for  any germ-grain model  in  which we can estimate  the mean
covariogram. In the future we are looking for more complex germ-grain models than the
Boolean model. We are also interested in the influence of the model parameters and the
observation window on the accuracy of the estimations. The prospect of describing a
convex random set by the characteristics of the random process associated to its Feret’s
diameters seems to be also promising.
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