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ERROR ESTIMATION IN STEREOLOGICAL DETERMINATION OF PARTICLE
SIZE DISTRIBUTION ’
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Department of Mechanical and Industrial Engineering
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ABSTRACT

Stereological determination of particle size distribution
normally amounts to solving a Volterra's integral equation of
the first kind. Computationally speaking, this integral
equation must be discretized and converted into a set of n
algebraic equations in n unknowns. As the value of n increases
the accuracy of estimation also increases. Here is proposed
a technique of replacing the distribution density f(r)
obtained from randomly intersecting planes with comulative
distribution density ¢(r). Here ¢(r) is the number of cross-
sections with radii equal to or smaller than r per unit area.
Similarly ®(R) is defined as the number of spheres with radii
equal to or smaller than R per unit volume. The integral
equation is thus reduced to an Abel's type. Finally, the error
involved in discrete approximation with large n is obtained
and the best formula to minimize the error is derived.

1. INTRODUCTION

Recently Kanatani and Ishikawa (1983) have reported some
applicable results on error analysis for the stereological
estimation of sphere size distribution. The purpose of this
paper is to extend their results to rotund particles with
random geometrical variationms,

A standard stereological technique will be employed here,
namely that, the size distribution of randomly distributed
particles in a material matrix will be estimated from an
observed size distribution of their cross-sections on a
randomly intersecting plane thru the material matrix. For
some recent results in comnection with the present problem
refer to Shahinpoor (1983), Shahinpoor and Shahrpass (1983),
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and Shahinpoor and Minis (1983). Classically, these problems
have been extensively treated as the Wicksel problem (Wicksel,
1925, 1926).

2. GOVERNING INTEGRAL EQUATIONS

Consider a material matrix dispersed with rotund particles
whose mean local radius is R such that R+R' is the actual ra-
dius of individual particles where R' is the fluctuation as-
sociated with the mean radii R, Let P(R) be the radius dis-
tribution density. Thus, P(R)dR is the number of particles
whose mean radii are between R and R+dR per unit volume. Now
let a flat plane randomly interset the material matrix, i.e.,
a plane is placed in the material matrix. Now, a radius dis-
tribution density p(r) of the rotund particle cross-sections
are obtained such that r is the local mean radius of individ-
ual templates such that r+r' is the actual size of templates
with r' a random fluctuation field associated with r. Note
that p(r) dr is the number of those templates whose mean radii
are between r and r+dr, per unit area of the intersecting
plane. We assume that the particles are distributed randomly
and homogeneously and the intersecting plane is of infinite
extent. Note that the probability for a particle of mean ra-
dius R to R+dR to be intersected by the plane is the same as
the probability that the center of volume of such a particle
falls within the distance R from the plane. The two--dimensional
distribution p(r) can generally be obtained through the
distribution of line transects as shown in Fig. 1,

Note that there are P(R)dR such particles per unit volume
and therefore that probability equals 2RP(R)dR per unit area
in the plane. The probability that a particle of mean radius
between R and R+dR create a template with a mean radius be-
tween r and r+dr, provided the plane has intersected the par-
ticle, is simply equal to |dx]/R, where x is the distance from
the plane to the center of volume. Thus, the probability dis-
tribution p(r) is obtained by multiplying Idxl/R by 2RP(R)dR
and integrating over all possible values of R, i.e.,

dx

R |
p(r) = i MR )2RP(R)dR , (2.1)

which can be simplified to the following Volterra type inte-
gral equation of the lst kind:

p(r) = 2r M pR)[R2-r21 R (2.2)
r

where Ry is the maximum possible mean radius such that p(Ry)=0.
Equation (2.2) can be inverted by techniques employed by Wicksel
(1925,1926)., Here we choose to deviate from the classical
Wicksel problem by reverting to cumulative distributions,
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Since the actual measurements are finite thus one has to
resort to discrete numerical techniques in order to evaluate
P(R). One way to circumvent the difficulty is to define a
cumulative distribution density ¢(r) and its 3-D counterpart
®(R), such that: ¢(r)=_JST p(r)dr, (2.3), where ¢(r) is the
number of templates witR mean radii equal to or smaller than r
per unit area. Thus, from equations (2.2) and (2.3) one ob-
tains,

2

o(r) = 2RN-2 /M p(R) [RE-r] %R, (2.4)

r

where N is the number of particles per unit volume, and R is
the "'mean radius' of all particles, such that,

N = /MM pR)dr , (2.5) R = %< /R RP(R)AR . (2.6)

o o

Integrating equation (2.4) by parts we obtain the following
Abel's type integral equation:

o(r) = 2N[§—(R§wr2)%]+2fRM R® (R) [R2-r2] " %dR | (2.7)
r

where ®(R) is the cumulative distribution function, i.e., the
number of particles with mean radii equal to or smaller than
R per unit volume. For a description of such Abel's type
integral equations and their numerical solutions please refer
to the classical works of Jakeman and Anderson (1974), (1975).
Again our technique differs from theirs due to the fact that
we employ the cumulative distributions in our computational
algorithm which follows.

3. DISCRETIZATION AND ERROR ESTIMATION

Equation (2.7) can be discretized and reduced to a set of
n algebraic equations of the form ¢(ri)=Ai-®(Rj), 1,§=1,25. 40,
n, (3.1). Where Ai.'s are constant coefficients, and the
Einstein's summatio% convention's is applied to repeated in-
dices.

Equation (3.1) can be inverted to yield: @(R.)=Bij¢(rj),
(3.2). Let us first invert equation (2.2) to an A%el's type
integral equation and then apply the discretization., Changing
the variables in equation (2.2) from r to s=rr? and from R to
S=nmR“, this equation is reduced to
1 1
72 5 p(s) (s-s) s (3.3)
s ) .

p(s) =m

1
~25

where SM=NRM2. Multiplying (3.3) by (s-a) ° and integrating
from o to «» yields the following inverse equation
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- ~1s
dR) = N-1 " R p(r) 2k dr . (3.4)
R
Discretizing (3.6) we obtain
-1 B . , L
d(R,) = N-7 1 ) . frJ p(r)(rz—ri “dr , (3.5)
J j=i+l Ty-1L

provided that o=r <r <r,<...<r =R, . Equation (3.5) is finally
o1 2 n
reduced to

-1 B 2 -1
@(Rj) = N-7 T (-t 2¢(rj) . (3.6)

j=i+1 4

e N

Thus the problem is reduced to the matrix equation (3.2)
such that ¢(ry,)=9%(o)=o determines the value N. In deriving
equation (3.6) we have used the following approximation:

r. 1 -1/ Y.
/3 (rz—r% 2 o(r)dr = (r%—r% 213 p(r)dr
r i 34 r
j-1 j-1
2 2. -k
. (rj-ri o) (3.7)

5. ERROR ESTIMATION

Considering equation (3.2) again one notes that the output
vector ¢(R;) pertaining to the cumulative particle mean size
distribution is obtained by multiplying the matrix Bi' by the
input vector ¢(rs) which is obtained from experimentai obser-
vations. The experimental observation contains errors from a
number of different sources. These sources could be purely
observational or purely computational. At any rate let the
input stereological error on particle size distribution be
denoted by A¢(rs;) such that equation (3.2) may be rewritten in
the form: ¢(Rig+A®(Ri)=Bij[¢(rj)+A¢(rj)], (4.1); where clear-
ly: A@(Ri)=BijA¢(rj), (4.2); is the error contained in the
final cumulative particle size distribution. In other words
how much is the error magnified or diminished in the final re-
sult and how susceptible is the numerical scheme to input er-
rors. As discussed by Wilkinson (1963), this susceptibility
is determined by what is called the "condition number.'" This
condition number is defined as C such that

I8

where ]Ié]hn is the "L™ adjoint norm" of a matrix A. If the

s 4.3

c =

o= gl
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condition number is very large, the susceptibility is large
and the scheme is not expected to yield accurate results.
Now consider equation (3.6) and note that: A@(R-)=A®O
+A®1(R-), (4.6); where Ad, is the error on computing N and
A@l(R-g is the error in computing the summation for a given
A@(Rj}. Neglecting A%, we obtain:
-1 B _L.
AO(R,) = - Ly @) e, . (4.7)
j=itl * J

e N

Therefore, for a given error introduced in the measurement of
¢(r) one can compute the output error on the particle size
distribution by equation (4.7).
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