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ABSTRACT

This article deals with the problem of image processing
of biological figures defined by closed or open curves and
illustrates a computerized analytical method for describing
the curve by a non-dimensional approach.

The valuable characteristics of the method (easy use,
inexpensive programs, simple hardware, very exact results) are
emphasized. The operations to which images are submitted, are
also explained:

— The figure is digitized into a set of points with

known coordinates.

— Upper degree polynomial equations are calculated with
the least square method to obtain the best fit function
curve available for direct comparison with the
empirical curve.

- Fourier harmonic analysis is applied to characterize
the set of the harmonics of the empirical scattered
curve and the function curve. The values of sum of
differences between the sets are calculated.

An Apple ITI Europlus computer is used. A mixed dinput
system (TV camera and/or digitized table) is recommenced. The
software "SAM" (shape analytical morphometry), has been pro-
grammed by the authors.

METHOD
Classical morphometry currently utilizes measurements and
derives from these the necessary parameters. Most of these

parameters, however, do not represent shape whose description
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should be obtained independently from dimensions (Pesce Delfi-
no et al. 1983, Ricco et al. 1983).

When we consider a bidimensional biological shape, gene-
rally we refer to a closed or open curve (the closed one
circumscribes an area): the aim is to find parameters descri-
bing the curve and its related surface so that comparisons
between images could become possible.

The main problem is segmentation of the image which
results in a set of points of known coordinates. From these
it 1dis easy to calculate areas, lengths, indexes but for an
analytic approach, it is necessary to find a parametrized
description.

For this purpose a personal computer (Apple II Europlus)
with 48 kbyte RAM and some peripherals (2 disc drives, a CRT
colour display, a graphic printer, a b/w TV camera with a
zoom lens interfaced with an AD converter, a digitizer table
and a plotter) are employed; a Dimmer controlled spot 1light
set is also necessary.

For classical methods of densitometric analysis we refer
to traditional text-books and recent papers (Oja and Collan
1983).

Two input systems are available: a magnetized graphic
table for manual tracing of contour and a TV camera for densi-
tometric scanning of the image; the latter automatically finds
points coordinates in which the scanning reads transition
between different brightness-levels related to a cut—off value
or to a densitometric slope (run-length-coding) and fills an
array.

The wuse of TV camera, that is absolutely necessary for
classification of grey levels of investigated images has a
limitation: it'requires much time for scanning of complicated
contours.

We propose a combined method (relatively rapid, ' easy to
use, not expensive and very exact) of 2 steps: a fast scanning
of the figure which after filtering and contour enhancement is
transferred to graphic table software: The digitized image is
virtually on graphic table where the user draws its contours
and, at the same time, follows the outline with a cursor
visible on the screen.

Photographs (Figs 1,6) or histological images (by a TV
camera connected with the microscope) are suitable for analy-
sis: image position and its enlargement are easily settled. If
dimensional bonds are requested, normalization (for dimen-
sions) and standardization (for position) are performed. The
latter is done easily, the former is more difficult and should
be performed when comparing different figures step by step;
but it is unnecessary when we are interested in classification
only. Standardization should be performed before normalization
and should be verified after normalization.

Parameters for position standardization (coordinates of
the starting point, direction of the outline, coordinates of
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the barycenter) should be positioned on the same line, hori-
zontal or vertical, and on the same side of the beginning
point. The best parameter for normalization is the number of
points in which perimeter is subdivided that should be the
same for all figures.

Particularly for differences existing in executing norma-
lization if the input system is the graphic tablet or the TV
camera, it is necessary to refer, by software, to the set of
data obtained from tablet to the standard of TV camera emulat—
ing TV camera scanning.

In classical morphometry irregular figures are frequently
approximated to an ideal circle but this causes a loss of
specific informations. So it is necessary to find other meth-
ods. The circle is well defined by coordinates of centre and
radius length. For irregular curves corresponding descriptive
parameters should be found. The first problem is definition of
a characteristic point of the surface. The barycenter may be
chosen because of its properties: it is a unique point in the
studied figure, it is unchanged after translation, rotation or
enlargement of the figure. Moreover if we arbitrarily consider
the examined figure made of uniform material, the barycenter
becomes characteristic for shape.

The second problem is to find analytic descriptions of
the shape: descriptive polynomials and spectral analysis.
Among numerous possibilities, polynomial splines, normalized
polynomials, wupper degree polynomials, we suggest the last
that can be written as

k 3 2 1
y = bk X + bk—LX + ee.e.. + by x4 by, x + b; x + b,

where y is the dependent variable to interpolate, x is the
given independent variable, k is the polynomials degree, b; -
b are the coefficients of the equations, bO is the constant
that has less significance than the other coefficients for the
description of the curve and is related to the coordinate
system (Curthbert 1980).

The coefficients of the equation are calculated with an
interpolation/regression algorithm by the least square method
that finds the curve with the minimum value of the sum of
square deviation and of variance; then fitness is checked by
estimating variance at the same time with the increasing
polynomial degree; the procedure stops when a degree of poly-
nomial is found to which a minimum variance value corresponds:
this is the best fit equation. It should have a number of
coefficients rather small in comparison to the number of the
points of the curve (Figs. 2,3,7,8,11,12).

Naturally it is possible to apply the least square method
using x-coordinates as an independent variable and y-coordi-
nates as a dependent variable and vice versa. This would be of
little use because equations so obtained for different
Structures are not related in any way to each other. If a
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closed curve is studied, only a slight winding curve, crossing
the examined figure, is found.

The main goal is the study of convexity of different
parts of profiles (Chassery 1982, Otsu 1982).

So we propose the following solution: x and y values are
separately considered as dependent variables compared with
arbitrarily selected series of positive integers from 1 to the
number corresponding to the numbers of points considered.

So the closed curve (for example of 100 points) is cut
off at the level from the first to the last point, half of the
curve (from 1 to 50 points) is fixed in its position, the
other half (from 51 to 100 points) is overturned 180 degrees
around two turning points which are the last point of the
first half of the curve and the first point of the second
half. The opened curve is submitted to the least square method
and the best fit curve is looked for (Figs. 2,3,7,8).

So two curves, one with x and the other with y as depen—
dent variables, are obtained, both available for use (obvious-
ly the selected curve should always be the same when used for
comparison); but necessarily both should be used when recon-
struction as closed curves of x,y coordinates of function
curve together scattered curve series is operated.

If normalization and standardization have been carried
out, the number of the points, the position of the beginning
point, the arrangement of values will be the same for all the
figures. Moreover the position of the barycenters, the curves
and 1its related equations will be directly comparable just in
a shape match with numerical indexes of the differences.

Without previous normalization and standardization the
polynomial equations give a shape factor index, variance val-
ues increasing proportionally with the complexity of the con-
tour.

The results are related to the match between the empiri-
cal scattered curve and the function curve obtained by solving
the equation of the series of independent variables correspon-
ding to the same number of the points of the scattered curve.
Because the equations have the same set of independent vari-
ables it will be possible to use variance values to make a
classification (Figs 4,9).

This condition is like the traditional comparison between
the examined contour and an ideal circle; but there is a
difference: now comparison is with empirical scattered curve
and function curve, the latter connected to the former by the
least square algorithm.

Moreover the selection, dimensional or spatial criteria,
of a circle to compare with the scattered curve becomes unne-
cessary.

There is only a rule to respect: at the input device, the
beginning point and the direction of the tracing should be
constantly the same.
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Error between the empirical scattered curve and function
curve is then calculated as total error, absolute total error,
total square error, mean error, absolute mean error, square
mean error and square root of the square mean error (Spiegel
1976). For previously normalized and standardized curve, these
parameters are calculated also between different curves.

The difference of length of the two curves is estimated
and finally the series are compared as standard error of a
linear regression analysis: some parameters give indications
about entity and direction of its crossings; the most synthe-
tic indicator is the square root of the square mean error. It
gives distance between scattered curve and function curve; if
normalization and standardization were performed, between
different curves also: so the first analytic dindicator of
shape is obtained.

Fourier analysis finds the harmonics of different fre-
quencies and arranges them in order of importance in determin-
ing the final function: the number of the harmonics of evalu-
able amplitude is proportional to the irregularity of the
contour (Churchill 1963, Spiegel 1974, Tai and Chiang 1982).

The typical function can be written as: y = ap + aj sinx
+ by cosx + a, sin2x + b, cos2x . ..ap sinkx + by coskx
where k is the maximum order of the harmonics, a and b are the
coefficients that evaluate the amplitude of the contributing
functions.

Fourier harmonic analysis gives the sine-cosine coeffi-
cients of the Fourier series, the amplitude of the requested
number of the harmonics and the sum of the differences between
the set of the harmonics of the scattered curve and the one of
the function curve: distance between the curves is proportio-
nal to this difference and to the irregularity of the scat-
tered curve: differences are calculated between curves of
different figures if previously submitted to normalization
and . standardization; so the second shape parameter indicator
is obtained (Figs 5,10).

SOFTWARE

The software utilized includes two packages:

I. Original graphic tablet software (Apple Computer Inc.)
modified after conversion in disc operating system 3.3 to
obtain an array with x-y coordinate values for each point of
the profile. Such array is then memorized in a text-file and
for closed figure, barycenter position is calculated and used
for rectangular/polar conversion.

IT. Original software by the authors: SAM (Biological Analyti-
cal Morphometry) that includes 3 groups of routines: The first
is dedicated to the procedure of dimensional normalization and
position standardization by a visible tunable coordinate sys-
tem and by bright points on the analogic monitor, both corres-
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ponding to the coordinate system on digitized image and
TV image.

A procedure seeks for the beginning/ending point and
performs an adjustment of tablet set of data to the TV stan-
dard; there are also routines for image brightness regulation,
and for the classic procedure of filtering, gray-tone balan-
cing and contours enhancement. At the end a routine transfers
digitized TV image to the software of graphic tablet whose
function "slide" allows further changes of digitized image
position.

The second group of routines performs densitometric
analysis for 64 grey levels, draws extinction histogram, makes
quantitative determinations and graphic restitutions, by grey-
classes, in false colour, by three-dimensional graphics and by
isodensity curves.

The ' third group of routines is dedicated to analytical
elaboration of the textfile, obtained from TV camera or from
both TV camera and the tablet.

The first routine of this group makes the splitting of
the original array containing x and y values of each point, in
two subarrays, one containing the x-value, the other the y-
value, in the same order of the original array.

These two new textfiles are saved and submitted to the
least square method starting from a second degree equation and
automatically increasing by step one, and simultaneously
making variance analysis; the computation stops when for a
further increase of the equation degree, the variance stops
its progressive diminishing; the best fit function is found
and the coefficients of the corresponding Kth equation are
given. These coefficients should be without rounding off or
truncation (Figs. 2,3,7,8,11,12).

Now a routine gives the "distance" between different
curves by evaluators previously indicated and draws a differ-—
ential graphic.

Then the software discharges the intermediate system of
service variables and reconstitutes an array by merging x-y
values calculated by the equation and plots together the
original scattered series of points and the function series of
points as two closed curves with their barycenters (Figs.
4,9).

So we can visually compare the two curves and exclude
errors in the intermediate steps. Errors if present, cause a
topographic incompatibility of the curves. Moreover the soft-
ware calculates dimensional parameters as length and surface,
its indexes and cord/arch ratios.

At the end two routines are dedicated to Fourier harmonic
analysis; the first calculates the sine-cosine coefficients,
the amplitude and the distribution of the harmonics; the
second gives the sum of the differences and the differences
between the set of the harmonics of the scattered curve and
the function curve and gives the results in tabular and
graphical forms (Figs 5,10).
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The time needed by the mixed input with TV camera and
tablet for analyzing one image is, without normalization, in
the order of one hour and half, about two hours if normaliza-
tion is performed.

The presented sofware offers a lot of possibilities more
advanced than commercial program packages but the time re-
quested for those operations is considerable. This is strictly
related to the high level language used for the software in
the current version.
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Fig.la. Section of a semi-
niferous tubulus with

complicated lumen contour
(low maturation arrest, H&E
stain, x 150). Fig. 1b.
Inner profile of tubular
epithelium: the contour is
digitized in 271 points.

i S R
Fig. 2. Example of processing a closed curve.. Polynomial
function curves of the abscissa values of every point in which
profile is subdivided (tubulus in Fig.l) a) 2nd degree
polynomial (variance 70.9); b) 3rd degree polynomial (variance
14.4); c) 4th degree polynomial (variance 13.1); d) 5th degree
polynomial (variance 11.8); 6th degree polynomial (variance
11.5); f) 7th degree polynomial (variance 8.4). Best-fit
equation: y = 152.230307 + 1.4770948x - 0.05547209x +
1.09838467x ~— 1.12526573x + 5.93704366x - 1.54632513x +
1.58191434x.

[ T
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Fig. 3. Best-fit equation of the ordinate values of every
point of the profile (Fig. 1 tubulus). y = 90.6349739 +

0.864901244% — 0.0246350707x + 1.86841129x — 2.43899021x -
3.79206075x + 2.02365561x - 3.07241808x (variance 6.18).

Fig. 4. Reconstruction as a closed figure of the empirical
scattered curve (plus signed) and of the best-fit function
curve in x and in y (dot signed) (Fig.l tubulus). Topographic
correspondence and coincidence of the barycenters of the
figures are clearly visible. The scale factors of graphic
restitution are responsible of some distorsion (surface de-
fined by scattered curve 984; perimeter 275; surface defined
by function curve 1048, perimeter 149).

Fig. 5. Comparison of the set of the harmonics (Fourier analy-
sis) of the scattered curve (double bars) and of function
curve (single bars) (tubulus Fig. 1). Sum of the differences
26.4; maximum difference in the Sth harmonic 4.51.

Fig. 6a. Histologic aspect of a seminiferous tubulus section
with slight dirregular lumen contour (high level maturation

arrest).

Fig. 6b. Inner profile of the tubular epithelium: the contour
is digitized in 128 points.
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Fig. 7. Best-fit function (Fig. 6 tubulus) of abscisse values
set. 7th  degree polynomial (variance 0.58): y =

137.234265 + 0.922442201x - 0.0432019958x + 1.95194144x -
4.23811307x + 4.28354952x - 2.01899305x + 3.6104286x.

Fig. 8. Best-fit function (tubulus Fig. 6) of ordinate values.
7th degree polynomial (variance 0.31);

y = 88.3731434 + 0.617905419x - 2.23763815x - 6.76294943x +
"7.54624713x + 3.64964835x - 7.23301636x + 2.26889216x.
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Fig. 9. Reconstruction as a closed figure of the scattered
curve (plus signed) and of the bestfit (in x and in vy)
polynomial (dot-signed) of the Fig. 6 tubulus. Barycenters
have the same position. ’

Surface defined by the scattered curve 601, perimeter 133;
surface defined by function curve 600, perimeter 101,

Fig. 10. Comparison between the set of the harmonics (Fourier
analysis) of the scattered curve (double bars) and the func-
tion  curve (single bars) of the Fig. 6 tubulus. Sum of the
differences 9.72; max. difference in the 6th harmonic 2.

265




468 VP DELFINO ET AL: ANALYTIC MORPHOMETRY IN BIOLOGY

..... //::.'f..i
€
i
/
rJ
/
rs
rd
3.
\.‘5
};’
/
‘-’;‘
| A
; A 12 |
H d B L

Fig. 11. Example of processing an open curve. Total fronto-
facial profile (vertex-prosthion) in left lateral norma of the
Australopithecus Africanus (Plesianthropus Transvaalensis).
Function curves of increasing degree polynomials from 2nd to
7th. 2nd degree polynomial variance 260; 7th degree polynomial
variance - 5.35; scattered curve length 260; function curve
length 257.

Fig. 12. Example of processing an open curve. The profile of
Fig. 11 has been subdivided in 2 parts separately processed to
increase analysis resolution. Frontal part (vertex-glabella):
bestfit polynomial 7th degree (variance 0.41). Facial part
(glabella-prosthion) bestfit polynomial 8th degree (variance
0.22). For equations in Figs. 11 and 12 see Pesce Delfino et
al. 1983.
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