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ABSTRACT

Formulae are derived for unbiased estimation of volume
fraction - and other linear properties — for 'thin' section.
sampling of spherical particles, the resulting circular
profiles being subject to a simple lower resolution limit.

Their computation is illustrated on lysosomal data.

INTRODUCTION .

In the 'Holmes' effect problem of stereology, a 'thin'
section of thickness t — from a medium containing randomly
distributed spherical particles - is viewed by transmission
microscopy. The resulting projected profiles are circular;
let the number of them with centres in the fixed section
area, A, be denoted by N and their diameters by {yj,yo,«-.,
yN}. It is assumed that diameters less than a known limit
(q) are not measurable and that overlap effects are neglig-
ible.

Literature on the Holmes effect for spheres includes
Bach (1959), Goldsmith (1967), Keidins et al. (1972),
Coleman (1979, 1980) and Piefke (1976). The first two
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papers consider only the case ¢ = O and, with the exception
of Piefke (1976), all concentrate on inversion of the
relation between circle diameter and sphere diameter distri-
butions rather than unbiased estimation of specific proper-
ties.

The distribution function (d.f.) of the diameters (x)
of all spheres in the medium for which x>=q 1s denoted by
G(x]q), and the number of such spheres per unit volume by
Nv(q). Making no parametric assumptions about G(.), un-

biased estimation is sought of the linear properties

0(a) = Ny(@) [ t@do&la 0,

Here 2(x) = mx3/6, mx%, x and 1 define 6(q) = VV(q), SV(q),
Jv(q) and Nv(q), respectively the total volume, surface area,
diameter and number of particles of diameter >=q in a unit
volume of the medium. The general formulation of Nicholson
(1970) applies in this case. It follows (e.g. Clarke, 1975)

that there exists an unbiased estimator of the form
o(q) = A7 TN n(y) 2)
1i=1 1
if a function h(y) can be found to satisfy

[ TR/ GP=y?) dy + eh(y) = 2(x) 3,

for all x in (q,®).

METHODS

The Volterra integral equation (3) is very similar to that
solved by Bach (1959) and Goldsmith (1967), relating circle
and sphere diameter distributions; see also Coleman (1979)

or Clarke (1975) for a solution involving only elemehtary
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mathematics. An analogous approach, followed by substantial -

manipulation, yields the convenient computational form
. o
h(y) = hO(y) - exp(cY?) fé hy (z)exp(-cz?)dz 4),
where for

Ny(@: hy(y) = 7K, hy(z) = £72 (5,

Jv(q): ho(y) 1 + qt7lE - 277 lsin™1 (D)

hy(z) = 2qn F + qt™2 - zt7lp*S (6),

4Y - 4t + 4t(1 + cq?)E

Sv(q): ho<y)

hi(z) = 4(1 + cq?) (7,

V(@) hy(y) = (GTlry? =ty + £2) + qt (1 + 2cq?/3)E

+ 271(y2 + c71){D(1-D?)"5(1+2D2/3) - sin~ (D)},
hy (z) = (2/3)q°(cF + 2F2 + 2¢71F3) - tzF'3 (8)
and D = q/y, E = exp(c(y*=¢?)), F = (¢®+z2)7}, ¥ = (y%-¢%)"5,
c = n/(4t2). ‘
Assuming that q = Vo €Y1 < V2 < eee < Yy the absence

of y from the integrand of the numerical integral in (4) may
be exploited to give the computationally efficient form

0@ = [ by = LY at 9) -

Here

N .
= -zl = 242
L = [, @ exp(mea®) dz,  ay = [y expe(y;?-a") "(10),

where the integration for z in Ij is over (y%_ -q2) "> to

v 1
(y% -q%)"%; simple 'Simpson rule' evaluation is adequate.

For grouped frequency data, y. having frequency f., the
i i
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factor fi should be inserted in the summation defining aj
in (10) and the summation of ho(.) in (9).

It follows from Nicholson (1970) that, if the sphere
centres form a Poisson process, an unbiased estimator of the
variance of é(q) is A'ZZhZ(yi). A consequence of Mecke and
Stoyan (1980) is that (4)-(10) are valid for a general
stationary point process of sphere centres; however, .
validity of the variance estimate requires the stronger

assumption of a Poisson distribution for N.

RESULTsS AND DISCUSSION

The data in Table 1 are extracted from a study by Lowe
et al. (1981) of digestive cell lysosomes from the digestive
diverticula of the common mussel M. edulis. Secondary
lysosomes were distinguished in cryostat sections by their
azo-dye reaction product for lysosomal B-N-acetylhexo-
saminidase. The present data are just that from a single
digestive tubule from each of two animals; row 1 is a con-
trol and row 2 an animal exposed for 103 days to the water
accommodated fraction of North Sea crude oil (30 ug%'l total
0il derived hydrocarbons). Table 2 gives the relevant linear
property estimates. This example has been included primarily
to facilitate the checking.of any computer software that the
reader may produce for equations (4)-(10); its toxicological
implications will not be discussed here beyond noting that
the pattern of increased lysosomal volume fraction and
reduced numerical densify, under such 6i1 expdsure, is
properly established by the full designed experiment.

In the current computing environment, the calculations
are neither complex nor expensive. Their use is advocated

for small samples, insufficient for an 'unfolding' approach.
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In particular, when many such point estimates are to be
input to a second-stage analysis, unbiasedness becomes an

important property.

Table 1: Frequency (fi) of lysosome profile diameters (yi),

for epithelial area A = 400 um?, resolution q = 1.2pm.

v; (pm) 1.2 1.5 1.8 2.1 2.42.73.03.33.63.94.24.5

Control fi 27 15 8 8 3 2 3 1 7 0 2 0

01l fi 4 4 7 6 1 0 1 1 1 0 1

4.8 5.1 5.4 5.76.06.36.66.97.27.57.8 N

0 0 0 0 1 0O O 0 0 0O 0 82
o 2 0 0] 1 2 0 0 1 2 37

Table 2: Linear property estimates and their standard

deviation estimates, for the data of Table 1.

Property _(dimension) Control 01l

Ny () (um™3) .00365(+.00041)  .00147(+.00025)
Iy (@) (ym™2) ~ .00705(+£.00083)  .00448(+.00081)
Sy(a) (ym™ 1) . 0524 (+.0080) L0624 (+.0152)

VV(q) (1) .0256(£.0057) .0592(£.0178)
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