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ABSTRACT

The optical fractionator is a design-based two-stage systematic sampling method that is
used to estimate the number of cells in populations that are too large to count exhaustively. Tt
counts the cells found in optical disectors that have been systematically sampled in serial
sections. Computer simulation was used to investigate three methods for estimating the
coefficient of error (CE), the precision of a population size estimate, obtained from a single
optical fractionator sample. The methods were: the original estimation equation of Gundersen
and Jensen (1987), its nugget effect modification (West et al., 1996), and the method of
Scheaffer, Mendenhall, and Ott (1996), which has not been used in stereology. It is difficult to
evaluate the estimated precision of population cell count estimates by using biological tissue
samples. They do not permit a comparison of an estimated CE with the true CE. Computer
simulation does permit such comparisons while avoiding the observational biases inherent in
working with biological tissue. The estimated CE’s were evaluated in tests of three types of
non-random cell population distribution and one random cell population distribution. The
non-random population distributions varied according to both section and disector location
within the section. Two were sinusoidal and one was linearly increasing; in all three there was
a 6-fold difference between the high and low intensities, i.e., expected cell counts per disector.
The sinusoidal distributions produced either a peak or a depression of cell intensity at the
center of the simulated region. The linear cell intensity gradually increased from the
beginning to the end of the region that contained the cells. The random population distribution
had constant cell intensity over the region. A test condition was defined by its population
distribution, the period between consecutive sampled sections and the spacing between
consecutive sampled disectors. There were 1,000 trials of each test condition. In each trial
were calculated the true CE of the expected cell count estimate and the three CE estimates
obtained by applying the SMO and both GJ equations to single two-stage systematic samples.
The estimated CE’s were compared with the true CE’s for all the population distributions. The
CE estimates obtained by the SMO estimator were found to be closer to the true CE’s and had
less scatter than those of the nugget-modified GI estimator. Both had small positive bias and
comparable scatter. The CE estimates obtained by the unmodified GJ estimator exhibited
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large negative bias and large scatter. In all the population distributions tested, the average true

CE was very nearly proportional to l/ JQ; , where Qis the average number of sampled cells.

Key words: computer simulation, optical fractionator, nugget effect, optical disector, cell
count estimate precision, systematic sampling.

INTRODUCTION

In biological tissue, such as brain, cell populations are often large and dispersed
through a region of interest that must be viewed in serial sections. A determination of the
number of cells within the region is not practical by exhaustive counting throughout the
sections. Instead, the proper approach is to estimate the population cell count by stereological
statistical sampling techniques. Among them are random and systematic sampling (Scheaffer
et. al., 1996). Of the two, systematic sampling is often more appropriate. It is unbiased and in
this setting it can often yield more precise population cell count estimates for a given amount
of sampling. Because of this it can reduce, relative to simple random sampling, the number of
samples required to achieve a desired precision in the population cell count estimate.

In design based stereology the systematic sampling procedure is referred to as the
fractionator (Gundersen, 1986, Gundersen et. al., 1988). It takes place in two stages and is
therefore called two-stage systematic sampling. The first stage consists of a systematic sample
of the K serial sections that contain the cell population whose count is being estimated. The
sequence is subdivided into subsequences of k sections. Systematic sampling begins at a
randomly selected initial section within the first subsequence. It continues by sampling every
kth until there are no more sections left to sample. The second stage is carried out within each
of the sections that were selected for sampling in the first stage. It consists of counting the
cells within a systematic sample of equally sized optical disectors that are systematically
spaced over the section’s area (West and Gundersen, 1990). Sampling begins at a randomly
selected initial location of the plane that defines the location of the first disector and continues
by sampling consecutive, evenly spaced disectors within the region of interest.

The population cell count in the region of interest is estimated by multiplying the total
disector cell count by a scale factor (West et al., 1991, Equation 1). The scale factor takes into
account the fraction of a section that a set of disectors has sampled and the fraction of sections
that have been so sampled. In our simulation, each section was constructed to contain an
integral number, J, of contiguous disectors, which were then subdivided into subsequences of j
disectors each. Sampling begins at a randomly selected disector within the first subsequence
and continues with a period of j until all selected disectors are sampled.

It is crucial to the estimation of population cell count that the precision of the estimate
be known or estimated with acceptable accuracy. In stereology, the precision of a fractionator-
based estimate of a population cell count is gauged by the estimate’s coefficient of error, CE.
The defining equation for the true CE is then (Cruz-Orive, 1990):

CE(N)=[Var(N)]"? /N (1)

Here N is the estimate of N, the true population cell count. In statistical theory the CE
is known as the “coefficient of variation”. In practical situations N will usually not be known
exactly because of its large size. In simulation studies, such as the one conducted here, it can
be specified exactly.
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The true CE of the estimator of N can be calculated by obtaining N for each of the
possible systematic samples that arise from starting at one of K sections and one of J disectors
within the starting section. The Var(N) above is the variance of this set of all possible N’s.
In biological tissue this is comparable to the work of exhaustively counting cells, but in
simulated cell populations it is easy to do.

It is desirable, however, to estimate the efficiency of a population cell count estimate
using only the data obtained from a single two-stage systematic sample. In this paper we are
concerned with three methods that attempt to do this. In general, the estimated CE can be
obtained by using the estimates for the unknown parameters in the defining equation:

estCE(N) =[est(Var(N)'2]/N ()

All three methods that we have studied here yield the same estimate of N. Since these
population count estimates are unbiased, the entire problem in estimating the true CE(N) is

that of estimating Var( N ), which was defined above,

Gundersen and Jensen (1987) proposed one such method that is based upon the work
of Matheron (1971). That method (hereafter GJ) uses one-stage systematic sampling. It has
been applied to tissue volume estimation obtained from cross sectional areas seen in
systematically sampled serial sections. It has also been applied to data from two-stage
systematic sampling; West and Gundersen (1990) applied it to optical fractionator estimates of
neuron populations in the hippocampus.

Recently, the GJ method has been recognized as not providing reliable CE’s of
population size estimates. To improve its performance a “nugget effect” correction term has
been added to the original estimator (West et al., 1996). This improves the performance of the
estimator although the extent of the improvement has not been fully evaluated, and that
evaluation is one of the goals of this study. We will refer to the nugget effect variant of the GJ
estimator as nugGlJ.

A third method for estimating the CE of a population cell count estimate is a one-stage
systematic sampling procedure that has been described by Schaeffer, Mendenhall, and Ott,
(1996). We refer to it as the SMO method. The SMO method uses simple random sampling

theory as applied to one-stage systematic samples to estimate Var(N). It has not been applied
to stereology. We use it with data from a two-stage systematic sample and compare its
performance to the two GJ methods.

It is not known how well either of the GJ estimators or the SMO CE estimator behaves
in estimating the variability of population cell count estimates, nor which of the three is
superior. The performance of the GI CE estimators has been evaluated only in limited studies
of biological tissue. As used in those studies the fractionator does not permit obtaining an
exhaustive set of systematic samples.  These studies also did not permit extensive
examinations of how the estimator is affected by different cell population distributions,
differently shaped regions, or different periods for sampling sections and disectors within the
sections. Likewise, the SMO CE estimator has not been evaluated in applications related to
biological tissue. Since the quality of a population cell count estimate depends upon its
precision, it is important that the behavior of these CE estimators be better understood. In
order to do this, we have evaluated them using computer simulations of a few particular cell
population distributions.
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METHODS

Computer simulation bypasses the practical problem of counting real cells in real
tissue, e.g., by an optical disector (hereafter disector). The nature of the simulation of a cell
population is such that it can be easily modified to consider various types of cell distributions,
non-random or random, within and across sections. It is a simple matter to define a region (or
volume) of interest by the number of sections and the number of disectors within a section. It
is equally simple to vary the cell population distributions and the fractionator sampling
parameters that determine the number of sampled sections and the number of disectors that are
sampled within a section. We use the term population distribution to refer to how the expected
cell count per disector (hereafter cell intensity) varies across sections and disectors. The cell
counts generated in the simulation are of those cells that have been specified, without error, to
fall within a given disector of a given section. The total cell count of a simulated population is
known and can be compared to the estimates of it obtained by the fractionator sampling
procedures. Most important is the fact that the true CE of a population cell count estimate in a
particular frial, which we define as a single realization of a cell population distribution. To do
this we first calculate the true CE as described in Eq.(1). Then we compare this true CE with
the estimates of it obtained from the formulae of GJ and SMO. We repeat this for each of
1,000 test cell populations and average the results for performance evaluation.

The simulation program was written in Quick Basic and consisted of the following
steps. A copy of the program is available from EG upon request.

1. Generate a sequence of sections that will contain the population. We chose 48 sections (a
number divisible by 12, 8, 6, 4, 3, 2 for flexibility in setting the section sampling period).

2. Partition each section into 48 (chosen for the reasons stated above) equally sized
contiguous disectors (the simulated equivalent of optical disectors). Note that neither the
sections nor the disectors have physical dimensions. The dimensions are unimportant
since it is only the number of cells within a disector that matters.

3. Populate each disector with a number of cells. The number of cells within a disector was
generated by a pseudo-random realization of a Poisson random variable whose cell
intensity depended upon the section as follows: we used five different cell population
distributions to specify a disector’s cell intensity.
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Fig. 1. Schematic diagram of the arrangement of sections and disectors. There are 48 sections, each
containing 48 disectors. The curves along the axes illustrate a single cycle sinusoidal
variation of expected cell count across sections and disectors. The number of disectors in a
section is the product of the disector sampling period and the number of disector sampling
periods per section. The same applies to the number of sections.
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a) Positive single cycle sinusoid. The minimum densities occurred at the first and last
disectors of the first and last sections of the sequence. The maximum cell intensity
occurred at the center disectors of the center sections. The cell intensity varied from
.333 to 2.0. The single cycle variation represents a narrow section containing only a
single row of disectors.

b) Positive single cycle sinusoid with respect to disector number and a positive 2.5 cycle
sinusoid with respect to disectors within a section. This simulates a section in which
there were between two and three rows of disectors within a section.

¢) Negative single cycle sinusoid. Here the minimum cell intensity of .333 per disector
occurred at the center sections while the maximum of 2.0 cells per disector occurred at
the first and last disectors of the first and last sections.

d) Linear ramp. The initial cell intensity per disector was 0.333 at the first disector of the
first section. It increased linearly with the section number and disector number to its
final cell intensity of 2.0 cells per disector at the last disector of the last section.

e) Constant cell intensity of 1.0 cells per disector in all sections. This defines a purely
random population distribution.

Select a systematic sampling protocol. The possible section sampling periods and disector
sampling periods are stated in (1) and (2) above. A section sampling period, k, was
specified as an integer between 1 (every section) and 12 (only 4 sections sampled).
Section sampling always began at a randomly chosen section within the first sampling
period. Similarly, a disector sampling period, J» was specified and could be assigned
integer values from 1 (every disector) to 12. Disector sampling began at the first randomly
chosen disector within the first disector sampling period. Thereafter the initial sampled
disector was the same in each sampled section.

Count the exact number of cells comprising the population in all disectors of all the
sections. This value is N.

Estimate the population cell count from each of the possible systematic samples.

Calculate the true CE from the population estimates obtained from this exhaustive set of
systematic samples. To do this one starts at each possible starting disector of each possible
starting section. The population cell count estimate is obtained from each member of the
set of all possible systematic samples. From this set the mean and the variance of the
population cell count estimates are obtained from all the systematic samples. Then one
calculates the true CE according to Equation (1). The true CE forms the basis for
evaluating the goodness of the estimated CE’s of the population cell count estimate.
Calculate the estimated CE for each of the possible systematic samples as obtained from
the GJ, nugGJ, and SMO estimators separately. The GJ and the nugGJ equations are based
upon Gundersen and Jensen’s (1987) Equation (6). All three methods are given in the
Appendix.

Calculate for all three estimators the mean values and variances of their estimated CE’s
over the set of all possible systematic samples.

- Repeat the procedure for the 1,000 trials having the same set of simulation parameters as

defined in (2), (3), and (4) above.

Average the 1,000 true CE’s and the 1,000 mean values and variances of the estimated
CE’s. Compare the true and predicted CE’s.



20 GLASER EM ET AL: A COMPARISON OF THREE ESTIMATORS

12. Calculate the CE’s of the GJ, nugGJ and SMO CE estimates. This permits examining their
variability.

13. Perform the foregoing steps for each of the selected population distributions and
systematic sampling parameters.

RESULTS

We investigated the effect of the systematic sampling parameters upon the CE, true and
estimated, for each of the population distributions. The systematic sampling parameters were
the section sampling period and the disector sampling period. We selected three section
sampling periods: 4, 6, and 8 and four disector sampling periods: 1, (all disectors), 2, 4, and 8.
These 12 different parameter sets and the population densities yielded a total of 60 fest
conditions of 1,000 repetitions (trials) each. When we analyzed the data, we found no simple
relationship between the CE and either the section or the disector sampling periods. On the
other hand, it became clear that when we combined the results obtained from the separate
population distributions, some general results become apparent. Plots made from these data
demonstrated (1) a general relationship between the average number of sampled cells in a test
condition and the true CE and (2) how well the different estimated CE’s were in accord with
the true CE.

Relationship between the average true CE and the average number of sampled cells
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Fig. 2. The average true CE values are plotted as a function of 1/\/6T . In this and subsequent
Sigures the plotted points represent the average values from 1,000 trials of each sampled test
population.

The nearly linear relationship between the true CE and the quantity 1/ \/a , where Q,
is the average number of sampled cells, is shown in Figure 2. Elementary statistical theory
yields a linear relationship for systematic or random sampling of random distributions, i.e.,
those in which cells are randomly distributed throughout the region of interest. This follows
from the fact that the number of cells in any random sample of a random population follows a
Poisson distribution. However, it is not immediately apparent that this would also apply to
non-random population densities. Note that if a particular sampling design yields an average
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sample count of 100, the true CE is nearly 0.1. Note that the population intensities are based
upon Poisson statistics whose cell intensity varies from disector to disector.

Comparison of the average original GJ predicted CE’s with the average true CE
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Fig. 3. The performance of the average original GJ CE estimator is plotted as a Sunction of the
average true CE. Each point represents the results for a single population distribution
sampled in a particular manner (see text). The identity line appears here and in all subsequent

figures.

It can be seen that there is a large scatter of predicted CE’s and that this scatter yields
values that can either underestimate or overestimate the true CE. In general the predictor tends
to be biased high for CE’s less than about 0.07 and biased low for values above that. Most of
the predicted CE’s are less than the true CE; it is the few highly discrepant outliers that mask
the tendency of the predictor to underestimate the true CE.

Comparison of the average nugGJ predicted CE’s with the average true CE

When the nugGJ estimator is used, the estimated results show a significant
improvement. The results are plotted in Figure 4.

Ao TeE

Fig. 4. The performance of the average nugGJ CE estimator is plotted as a function of the average
true CE. The data points and straight line are explained in Figure 1 caption.
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The scatter in the predicted values is greatly reduced as compared to the original GJ. The
estimated CE’s are biased high and are al-most always higher than the true CE. The bias yields
predicted CE’s that are about somewhat higher than the true CE when its value is about 0.1.

Comparison of average SMO predicted CE’s with the average true CE
The values obtained from the SMO CE are shown in Figure 5.
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Fig. 5. The performance of the average SMO CE estimator is plotted as a function of the average true

CE.

The relationship between the SMO CE and the true CE is nearly a linear one, although
biased high for CE’s greater than about 0.06. Unlike nugGJ, the SMO estimator can yield
predicted CE’s that are less than the true CE.

DISCUSSION

This is the first study to employ simulation to evaluate the performance of estimated
CE’s in fractionator-based population cell count estimation and to compare estimated with true
CE’s. Previous studies have dealt only with estimated CE’s obtained from very limited
amounts of biological data. They have not been able to evaluate the estimated CE’s with
respect to true CE’s.

Simulation idealizes and simplifies the systematic sampling paradigm while preserving
its essential features. Simulation avoids the tedious, error prone procedures that occur when
counting cells in optical disectors. Such errors obscure the issue. Because the disectors
occupied contiguous, integrally spaced locations within the region, we could perform
exhaustive systematic sampling and thereby determine the true CE of a fractionator population
estimate. This permitted making direct comparison between the estimated CE’s and their true
values for all the different population distributions. It is unlikely that this special property of
our simulation materially affected the results. It should be clear that if the CE estimators do
not perform well in this idealized situation, they would be even less successful in a real
situation where departures from theoretical models are even greater.

The variation in population distribution within a section was such that each section
could be thought of as a narrow slab of tissue sampled by a single row of disectors. To be sure
this did not influence our results, we also conducted tests with a 2-cycle and a 2.5 cycle
variation in cell intensity. These could be considered to represent a section with two or two
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and a half rows of disectors. The results were not different from those obtained with the single
cycle or linear ramp variations in cell intensity.

The population distributions we employed provided a systematic variation in cell
intensity from section to section and disector to disector. The number of cells within a disector
followed a Poisson distribution. It is not clear whether the choice of a Poisson distribution is a
major factor that influenced our results. However, the Poisson distribution is a reasonable
approximation of the kind of variability that occurs in real cell populations.

A major finding of this study is that a fractionator-based estimation of population cell

count yields an average CE that is nearly proportional to 1/ \/a . The number of sampled
sections and the number of disectors within a section are important only to the extent that they
influence the number of sample counts obtained.

All three CE estimators are based upon one-stage systematic sampling theory and to
that extent are not fully appropriate for application to the fractionator’s two-stage systematic
sampling. None of the estimators take into account any cell intensity changes within
individual sections. Both the SMO CE estimator and the nugGJ CE estimator yielded
estimates close to the true CE. However, the SMO estimator was more precise and had less
scatter. The nugGJ estimator has been used by West et al. (1996). The sampled cell count is
the predominant contributor to the estimated variance of the nugGJ CE estimator. This means
that the variance increases approximately as the sampled cell count and that the CE of the
population size estimate is therefore nearly in inverse proportion to the square root of the
sampled cell count. This behavior is close to that of the SMO CE estimates and with the
behavior of the true CE itself,

In contrast, the unmodified GJ CE estimator did not perform well; it exhibited a large
scatter and usually significantly underestimated the CE. Although this population size
estimator has been previously acknowledged to have shortcomings, we have been unable to
find published information as to why this is so. This simulation therefore has in part
documented its shortcomings.

Although the nugGJ estimator did not perform poorly, the SMO estimator performed
noticeably better. Also, the SMO estimator is conceptually simple, easy to implement, and it
offers the possibility that its theory can be extended to two-stage systematic sampling.

We do not claim that the SMO estimator is optimal, but in the settings we examined it
is better than the others. Our purpose was to compare the three methods but not to analyze the
reasons for their differences.

None of the CE estimators we tested is able to estimate how precise its CE estimate is.
This is a matter of some interest since a grossly incorrect CE estimate can badly influence the
conduct of an experiment. Our results, not included here, indicate that the magnitude of the
CE’s of the CE’s are about equal to the CE’s themselves.

We realize that there may be some problems in applying a simple ransom sampling
error predictor in a systematic sampling context, even though the 1/Q term dominates the
simulated models. The problem is non-trivial and can hardly be fully explored by way of
simulation alone. Nonetheless, it is interesting to see that in the settings we studied the SMO
estimator is superior to the others.
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CONCLUSION

Simulation studies reveal that the CE of a fractionator-based population cell count
estimate is well estimated by the CE estimator described by Scheaffer et al. (1996) and almost
as well by the nugget-corrected estimator of Gundersen and Jensen (1987). These results
apply to both non-random and random cell populations.

The original CE estimator of Gundersen and Jensen (1987) yields values that fluctuate
greatly and tend to be substantially lower than the true CE. This erratic behavior indicates that
that prediction equation is inappropriate for population cell count estimation.

The CE of a fractionator estimation of population size, for nonrandom and random
distributed cell population, is nearly inversely proportional to the square root of the average
number of cells sampled. This empirical result is an extension of a well-known finding that
applies to a random distribution of cells.
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APPENDIX

The Gundersen and Jensen CE estimator
The Gundersen and Jensen estimator of the CE of the population cell count estimate for an
individual subject is given by (for clarity we have modified the notation slightly):

GICE =/[3A +C—4BJ/12/Q, (A1)

where Q; is the number of cells counted within the optical disectors of the ith sampled section,
Lis the total number of sampled sections, and Qy is the number of sampled cells. When i+1 or
i+2 exceeds I, the corresponding value of Q; is 0.

1 1 1 1
Qr=2Qi, A=3Q7, B=3 QiQu» C=).QQu, (A2)

i+2
The nugget correction alters the equation, to the form:
nugGJ CE = {Q +[3(A - Q)+ C—4BJ/12}'"?/Q, (A3)
Note that neither the original GJ equation nor the nugGJ version are concerned with the

population of cells within individual disectors and are insensitive to any spatial ordering of cell
counts from disector to disector.

Scheaffer et al. CE estimator

From Scheaffer et al (Chap. 4, 1996) for the estimated population cell count that results from a
single one-stage systematic sample. The estimated mean cell count per disector and the
estimated variance of cell counts among disectors are:

_ Yo Ho,a)

mean: Q :% variance: s-:# (Ada&b)

where Q,, is the cell count in the mth sampled disector and f is the total number of sampled
disectors in a trial.. In our usage, the sampling units are the disectors. Note that the locations
of the disectors within the sections are irrelevant.

The estimated variance of the mean cell count per disector is: fpc*s*/f, where fpc is the finite
population correction that is given by = [(F-f)/F]. F is the total number of disectors in all the
sections of the trial and is known in our simulations. It will usually be unknown in actual
stereological usage.

The estimated cell population cell count, given F is FQ. The estimated variance of FQ when
F is known is: fpc*F**s%f. From this, it is easy to show that SMO CE=/|l/f —-I/F x(s/é)
We used the fpc in our simulation, but if F is much larger than f, 1/F can be neglected. Then,
for random populations, SMO CE ~ (s/Q) x (1/\@) . When the population statistics are Poisson,
this simplifies to:

SMOCE=~1/,[Q, . (A5)
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