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ABSTRACT

In this paper, we present an overview on the possibilities of mathematical morphology during
image processing and image analysis from the first steps of filtering to the final one
corresponding to measure and modelling.
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INTRODUCTION

The aim of image analysis is to describe an image or a set of images by some parameters or
render these images by synthetic models estimated from measurements. Today, image analysis
is generally performed by an automatic system. Before measurements, it is necessary to treat
the image to eliminate noise and non-interesting parts, to enhance regions which must be
analysed and finally to separate each set of interest.

Several methods can be used to treat image before measurements. These methods can be
classified in two main groups. The first one derives from signal treatment techniques with
linear operators (Fourier transforms, convolution products, ...), the second one uses
mathematical morphology transformations which are non linear operators. Matheron and
Serra are the fathers of mathematical morphology. Two books written by Serra (1982, 1988)
resume these works in the domain of image processing and image analysis. Today other books
have been published in French (Coster and Chermant, 1985; 1989) or in English by american
workers (Dougherty and Giardina, 1987; Giardina and Dougherty, 1988).

The image treatment can be divided in three steps : pre-treatment, segmentation or
threshold, and post-treatment. After these steps, analysis itself can be performed. The scope of
this paper is to present the contribution of mathematical morphology to image treatment and
image analysis and to give some examples.
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IMAGE PRE-TREATMENT

In this paper, we shall not speak on the very important problem of image acquisition because
it is a "hardware" problem where mathematical morphology or alternate methods are not
used. Afterwards, one assumes that initial images are stored in the memory of a computer or
image analyser. Mathematically speaking, an image can be represented by a function f(x)
belonging to space IR*IR , where x is the point of the support IR and f(x) the radiometric
value of this point defined in IR space.

Two kinds of filters are used during the image pre-treatment step. In fact two problems must
be solved before segmentation: one must eliminate the noise and enhance the objects.
Nevertheless, for images without noise and having a good contrast between background and
objects, this step can be avoided. In terms of signal analysis, to eliminate the noise without
to destroy information, it is necessary that the noise appears to different frequencies than that
of the analysed features. In this case, the filtering can be made by three kinds of filters :
linear filters, adaptative filter or morphological filter.

Low pass filters

Generally the noise is in the high frequency domain, then a low pass filter must be used. In
mathematical morphology, the standard filters are opening, noted OBf(x), and closing, noted
FBf(x). They are built from erosion and dilation, respectively noted EBf(x) and DBf(x). For
IR>IR functions, B, is a structuring function V(y) defined on the support B centred on x, (y
€B,). With these notations, the following relations define respectively erosion and dilation :

E°f(x)=inf(f(x)-V(y):yeB,) ¢y

D?f(x)=sup(f (x)+V(y):y €B,) )

Opening and closing are then defined by OBf{x) = DBEB(f(x)) and FBf(x) = EBDBf(x).
Unlike linear filters or adaptive filters, the morphological filters are not symmetric but they are
idempotent and increasing. They modify only the narrow crests and peaks (opening) or nar-
row valleys and basins (closing), but this modification is generally more important than that
is obtained from other filters (figures 1 to 3).

To avoid this strong modification, other more complex morphological filters can be used. By
using the extensivity or anti-extensivity of morphological filters, these can be classified.
Indeed, there are :

F? f(x)2F* O"F” f(x) 2 F* O° f(x) or O”F” f(x)> O” F* O f(x)> 0® f(x) (3)

The complex filters thus defined are more smooth than standard filters. In the domain of low
pass filters, two other classes of morphological filters exist, the first corresponds to
sequential filters and the second one to auto-median filters. These filters are built from
four basic transformations : opening, closing, and "sup" or "inf" between two images.
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Figure 1 : Initial image. Figure 2 : Opening image of size 5 on fig.1.

Figure 3 : Closing image of size 5 on fig. 1.
Sequential filters

Let v; be a granulometric transformation by opening with convex structuring element of size i
and ¢; a granulometric transformation by closing of size i. From y;and ¢, it is possible to
build alternative sequential filters. In discrete case, the simplest sequential filter is defined by
(figure 4) :

Mif(x):Yi(Piyi.|(Pi.1~~Y|(P|f(x) )

Mf(x) generalises the filter yipi, by alternative opening and closing of increasing size. By a
decreasing sequence it is possible to build another sequential filter M f(x), defined by :

Mif(x)=71¢|72¢’z~--7i¢if(x) %)
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Theses filters have good properties. If y and ¢ have granulometric properties then M keep this
property. In mathematical morphology field, alternative sequential filters are considered as
good noise cleaner. They have been used by different workers ( Sternberg (1986) and Destival
(1986), in satellite image field; Bloch and Préteux (1986) in scanner radiography; Friedlander
(1986) in cardiology; Gued;j (1986) in materials science, ...).

Figure 4 : Sequential filter M3 on fig. 1.

Auto-dual filters

Figure 5 : Auto-dual filter on fig. 1.

Auto dual filters (figure 5) correspond to a second class of complex morphological filters. The
previous filters are asymmetric because at the beginning one starts from opening or closing
which are respectively anti-extensive or extensive transformation. Let T, be an anti-extensive
filter (ex. yy) and T, an extensive filter (ex. ¢yd); it is possible to define a symmetric morpho-
logical filter called, auto dual-filter, Bf(x) given by :
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Bf (x)=sup[T, £ (x);inf[T, 1 (x). f (x)]] (6)
If T, and T, are dual, then :

BA®)) = - Bx)) @

By iterative process, one obtains an auto median filter. An example of this filter has been given
by Lay (1984). The convergence of this filter is slow. That is the reason why the iterative
process is often limited to some steps only. This class of filters can be used to eliminate noise
in image pre-treatment (Prod'homme ,1992; Prod'homme and al., 1992).

High Pass Filters

Generally image enhancement is often obtained by high pass filters. In mathematical
morphology, the main high pass filter is the morphological gradient. It is obtained by difference
between two images. The first one must be greater than the second one (from the mathematical
meaning). The most common morphological gradient is (figure 6) :

(D f(x)-E* f(x))
21

Grad(f(x)) = ®)

5

Figure 6 : Morphological gradient on fig. 1.

The morphological gradient image is similar to the image of the gradient modulus for a
function continuous and derivable. It is often used before image segmentation by morpho-
logical methods (as we can see later on). Two reduced versions of morphological gradient can
also be defined and called respectively external and internal gradient (Beucher, 1990) :

Grad' ( /(x)):%(xz—m and Grad ( f(x)):f(X)—f‘Bf(X) @)

For these kinds of filters (low and high pass), the definitions are given with an Euclidean sense
(i.e. without any condition). A geodesic version of these filters exists. In that case the
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transformations are performed within a mask defined by a binary or grey tone level image. It
should be noted that any filter corresponds to Laplacian filter in mathematical morphology.

IMAGE SEGMENTATION

Image segmentation is the most important step in image processing, because that is the step
where one loses the greatest quantity of information. The segmentation process can be classi-
fied in several classes : pixel-based methods, region based methods and edge based methods.

The pixel-based segmentation only takes the grey value of a pixel in order to decide whether it
belongs to the object (phase) or not. The automatic threshold uses histogram analysis
(Zeboudj, 1988; Prod'homme and al., 1992). Because, the segmentation depends only on the
grey value of the pixel, any morphological operator can be used for this kind of segmentation.

Region-based methods focus our attention on an important aspect of the segmentation process
which has been missed in the previous methods : the connectivity of the neighbouring pixels. In
mathematical morphology, top hat transform (Meyer; 1978) and watershed methods (Beucher,
1990) belong to this class of methods.

The human perception of the image is frequently based on the edge detection process. In image
processing, this kind of segmentation is often used, but in mathematical morphology any
classical operator belongs to this type of segmentation.

Top hat transformation

Top hat transformation (figures 7 and 8) is the first morphological transformation belonging to
segmentation process. Let f{x) be the grey tone level image at point x and t a grey tone level
value. The top hat transformation combines a morphological filtering with a threshold. The
standard of this transformation is defined by :

X={x: f(x)-0°f(x)21} (10)

Figure 7 : Normal threshold on fig. 1. Figure 8 : Top hat transform on fig. 1.
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A dual version according to complementation and using closing transformation has been also
defined :

X={x:Ff(x)- f(x)21} (11)

Starting from the Meyer definition, Bonton (Bonton and al., 1986) proposes another
transformation called "discriminating" top hat transformation defined by :

Lo AB Y] <
2() :{o if F £ (x) -0 f(x) <t (a2)
S (x) else
This transformation gives a grey tone level image which requires a threshold to perform the
segmentation. This last transformation has two important properties : segmentation of same
class of particles on different background and segmentation of different particles on the same
background.

Watershed segmentation

A grey tone image can be considered like a relief. This relief can be segmented in different
regions called the catchment basins. If one supposes that it rains on these relief, each region is
then delimited by the watersheds. To obtain a segmentation by watershed, several methods can
be performed. According to the terminology in image processing, watershed segmentation can
be considered as a region-growing algorithm. The earliest methods have been built from homo-
topic thinning (Beucher, 1983). This is the grey tone level version of the skeleton by influence
zone for binary images. The grey tone level thinning starts from the regional or local minima.
This first algorithm can be used on analyser system having dedicated morphological hardware
increasing the speed of treatment, but it is a very time consuming process on classical com-
puter. This is the reason why other algorithms, using modern methods in computer techniques,
have been created (Vincent, 1990; Vincent and Soille, 1991). Their algorithm is based on an
immersion process from the local minima in which the flooding of the water in the relief is
obtained by using a queue of pixels.

Before to describe the building of catchment basin by immersion (independently of the
algorithm), some transformations must be defined. Let f{x) be the image function, Z e IR? its
support and M the maximum of grey tone level. The threshold at level t is defined by :

X' ={xez f(x)<s} (13)
Let m/x) be the local minima and Wy the section of catchment basin at level t. To obtain
these catchment basin, we must use the geodesic skeleton by influence zone of W, , inside X,.

Starting from W, = myffx), we have the recursive relation from t = 0 toM:

W, =SKIZy, (W) m,f (x)W, =SKIZ,, (W,,)Um, £ (x) (14)
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W, is the set of catchment basins and the watershed of f{x) is the complementary set of the
catchment basins. After that these catchment basins can be labelled by their minima.

This method of segmentation is very powerful and used in many domains of application. For
true grey tone level images, watershed segmentation has been used for the analysis of electro-
phoretic images (Beucher, 1983), for the analysis of road traffic images (Beucher and al.,
1990), for the analysis of fracture surface (Beucher, 1990). Generally the watershed algorithm
is not performed directly on the initial image but on the filtered one, because it is very sensitive
to noise. Another way to eliminate over-segmentation is to use some morphological transfor-
mations to connect the neighbouring minima. These transformations can be classical dilation or
more complex algorithms like rh-minima (Grimaud, 1991). Often, to perform segmentation the
morphological gradient of the image is used. In this last case a pre- treatment is generally per-
formed to avoid over-segmentation.

Figure 11 : Watershed of distance image on fig. 10.
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The watershed segmentation can also be applied to separate convex particles in set (or binary)
images (figures 9 to 11). The process is the following. First, the distance function of the set
which must be segmented is performed. By this process, each pixel of the set takes a grey tone
value corresponding to the distance of this pixel to the boundary of the set

JS(x)=d(x X, éX) (15)
Then negative image is obtained from the following expression :
g(x)=M-1(x) (16)

Finally, the watershed transformation is performed on g(x) to give boundaries between convex
particles.

Today, the watershed segmentation replaces the segmentation of binary images based on
ultimate erosion and SKIZ (Lantuejoul and Beucher, 1981; Chermant and al., 1981). A more
complex version (Gauthier and al., 1993), using multi-mode images, directional morphology
(Kurdy, 1990) and rh-minima, was performed to separate polygonal and convex grains in WC-
Co system.

ANALYSIS

According to the domain where image treatment and image analysis are used, the last step is
either a quantitative description or a decision. In the domain of "statistical" images this last
step concerns the quantitative description. To describe quantitatively an image, two
approaches are possible. The first one is a passive approach where the description is given by
some parameters (often stereological parameters) or by some functions (often size distribution
functions). The second one is a more active approach where the description is synthesised by a
model (probabilistic models for example). For these two approaches, mathematical
morphology can be used.

Stereology and mathematical morphology

The mathematical morphology is very well adapted to estimate stereological parameters. For
example, to obtain specific connectivity number of a phase, N,(X), two hit or miss
transformations must be performed. So with a square grid in 8 connectivity the two structuring

elements are :
1 0 1
and
o o= ;o]

So, with N,(X), it is possible to estimate the integral of mean curvature of the phase X per unit
volume, M(X), using the following stereometric relationship :

My (X) = 27N, (X) (17)
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The knowledge of M,(X) is very useful in sintering investigations with liquid phase since the
coarsening of larger particles from smaller ones depends on the difference between their mean
curvature according to Gibbs' equation (DeHoff, 1984; Quenec'h, 1991). For this kind of
investigations the material (or biological) microstructure is known only inside a mask. The bias
of local knowledge introduced by this mask can be corrected by two ways : the first one uses
the theorem of mask of measurements (the measure must be performed in an eroded mask)
(Serra, 1982), the second one uses shell correction method (Pinnamaneni and al., 1989).

Granulometry and mathematical morphology

The size distribution analysis is an important domain of image analysis. For individual particles,
a great number of methods and measures exist without using mathematical morphology. But,
mathematical morphology is a tool very well adapted to characterise the granulometry of
interconnected media by using opening by a convex structuring element. In this case the size
distribution function is given by the general equation :

GO\ = Mes(f(x) or X)— Mes(0™ f(x) or X) 18)
Mes(f(x) or X)

As indicated by this equation the granulometry can be performed on set X or function f{x). In
the case of set analysis, Mes is area for bi-dimensionnal structuring element of size A or length
with a segment of size A. Granulometry by opening is often used in quantitative metallography
(Chermant and Coster, 1991). It should be noted that P(l) function, which corresponds to area
fraction of eroded set by segment of length I, gives by derivation linear granulometries. For the
function, the measure is the volume of the sub-graph of the function (Coster, 1992).
Granulometries on grey tone images (by opening or closing) have been used to analyse the
texture of ceramic films (Prod'homme and al., 1992), deep etched surfaces of extruded steels
(Michelland-Abbé and al., 1992) or fractured surfaces of steels (Michelland-Abbé and al.,
1991).

Modelling and mathematical morphology

If it is possible, the modelling is the more synthetic way to describe quantitatively the analysed
structures. Probabilistic models are good tools to describe quantitatively the statistic images
obtained from metallographic sections or others ways (Jeulin, 1991;1992). These models are
characterised by functionnals called Chocquet's capacities depending on compact K. These
functionnals are known analytically for several models like Boolean models, dead leaves
models or mosaic model. By mathematical morphology, it is possible to estimate the Choquet's
capacities T(K) because they correspond to a measure on eroded set by compact K according
to their definition :

T(K)= 1-Q(K)=P(Kn X #@)=1-P(K c X°) (19)

These probabilistic models have been tested with success on sintered materials (Quenec'h and
al., 1992, 1993) and on powder materials (Jeulin and Terol Villalobos, 1992).
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CONCLUSION

Mathematical morphology can be used during all steps of image processing and image analysis.
It is a very convenient tool for statistical images since after filtering, segmentation and
measures, it is possible to describe the images by a model .
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