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ABSTRACT

A few notions about the surface area and the surface roughness are reminded. Afterwards, a
new expression of the surface roughness is introduced : the relative roughness. This is the
expression of transformation of which an example is presented. This method is tested on
fractal simulations and next, is applied to non planar surfaces.
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CALCULATION OF THE SURFACE AREA

The calculation of the surface area can be made with several methods. Hénault has described
in his thesis (1992) three methods among these adapted to the image analysis : the method of
triangulation, the stereological method based on the Crofton formula and the method
generalizing the Steiner formula. This latest is adapted to the investigations using the concept
of the fractal analysis. The expression of the generalized Steiner formula for a surface area is

S(f) =r1jin0 V(SG() ® B )2-rV( SG(H © B(r)) [1]

where fis the function representing the non planar surface and SG(f) is its subgraph, B(r) is
the ball of radius r and S(f) is the surface area of fcalculated in R’.

SURFACE ROUGHNESS R,

The surface atea is an absolute parameter and our images are known solely in a mask so it is
nhecessary to use a relative parameter : the surface roughness, noted R, It is defined by the
following expression :

- S(f)
A(supp(f) )
in which supp(f) is the support of f (mask of the image).

[2]

This definition of the roughness is commonly the most embraced in quantitative fractography
(Kendall and Moran, 1963; El Soudani, 1974; Chermant and Coster, 1979). Nevertheless, it is
not adapted to the images acquired in the SEM, because it depends on the anamorphosis
(Hénault, 1992; Coster, 1992) hence on the conditions of acquisition. Therefore, our aim is to
find a new definition of the roughness adapted to all the means of acquisition.
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INTRODUCTION OF THE RELATIVE ROUGHNESS

Then we must approach the roughness in a different way. Numerous authors have studied the
non planar surfaces by the fractal models (Coster and Deschanvres, 1978; Underwood and
Banerji, 1986; Baran et al., 1992). We take back this idea in which measurement of the
surface area corresponds to an overlapping of this by a volumic structuring element. The
difference between the dilated and eroded of the image, or the subgraph of f, is a compatible
transformation with that. The axis z (photometric axis) has not the same scale as another axis
(spacial axis) then the hypothesis of self-similarity used in fractal analysis is not verified in
this case. On the other hand, we can test the validity of the hypothesis of self-affinity and
calculate the fractal dimension with the method of Minkowski-Bouligand which is defined for
a curve by :

Du(f) =xh'm0(2 - log(S:(f 4) ) [ log(21) ) (3]

with S;( f; A) being the surface area of the Minkowski ribbon obtained by dilation of the
function f; representing the curve ¢, by the disk of radius A (figure 1).

Figure 1: curve ¢ (— ) and its dilation (1) by a disk of radius A (I ),

Likewise, the Minkowski dimension for a surface Sis defined by :
Du(f) = xﬁmo( 3 - log( V(£ 4))/log(2)) ) (4]

with V(£ A), the volume obtained by dilation of the function J; representing the surface S, by
the ball of radius A.

In the same way, we can study a function called function of relative roughness. It is defined
by the next expression :

Ry(fiA) = S(fA) [ S(fike) (5]
where A is the current step of measurement and A, is the shortest step.

The division of the surface area S(f;A ) by a surface area S( fiA ) reduces the influence of the
anamorphosis. Only the transformation depends on it. If the flat structuring element is
employed then the measurement is independent of the anamorphosis. Contrary to the classical
roughness, the relative roughness has a meaning exclusively when the transformation is
performed, because it is the expression of this transformation.

USE OF THE STEINER'S METHOD
The volume calculated in the relation [4] can be expressed by :
V(fL) = V(SG(f) ® AB) - V( SG(f) © AB) [6]
where B is a ball with a unit radius.
The generalization of the Steinet’s formula to any radius A is :

V(SG() ® AB) - V(SG(f) e AB)
2\

S(fr) = (7]
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Thus the relation [4] becomes :
Du(f) =xlim0(2 - log(S(f; 1)) /log(21)) (8]

The study of log( S(f;A) ) versus log(2A) will allow to assert or to invalidate the hypothesis of
self-affinity, and, in all case, to know the instantaneous dimension of the surface for A
(similarity ratio).

APPLICATIONS
i) Analysed images
This method is tested on simulations and real non planar surfaces like the surfaces of fracture

(steel, alumina) and ground samples. The large variety of textures of these images allows to
verify the general sight of the method.

ii) Structuring elements

In the expression [7], B is a ball but another structuring element can be used. In fact, the
method based on the Steiner formula is tested with the following structuring elements : the
thombododecahedron, the cuboctahedron, the pyramid with a square base and the cube for the
volumic elements, and the squared flat structuring element.

The divergence between the curves log(Rs(f;A)) versus log(21) for the different structuring
elements increases with A (figure 3). The limit of this curve when A tends towards the infinity
depends on the structuring element. The slope of the asymptote is null for the volumic
elements and -1 for the flat elements. When A is not negligible in comparison with the size of
the support of f, this slope has no meaning for the flat element because it implies an
instantaneous dimension equal to 3, whereas a surface without ovetlapping can not reach this
dimension. For the volumic element, the instantaneous dimension is equal to 2 that
corresponds to a surface viewed without relief by an element of great size. In this two cases,
we testrict the study of log( S(f;A) ) to the small values of A faced with the size of the support.

In this conditions, each structuring element acts differently and allows to apprehend the
geometry of the relief. However the anamorphosis modifies the intensity of the relief and all
volumic structuring elements are sensitive to this (figure 2.a). Only the flat structuring
element is independent of the anamorphosis (figure 2.b) and can verify the hypothesis of self-
affinity.
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Figure 2 : Linear anamorphosis (divided by 1 (—), 2 (@==),4(.=)and 8 (mun) ) on
images of fracture of alumina C for a magnification 500 studied by a volumic structuring
element (a) (thombododecahedron) and by a flat structuring element (b).

iii) Influence of the parameters of acquisition
The photometric differences between two points of the image can not be linked up to the
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difference of its real heights on the observed surface when the observation is effected on the
SEM. The variation of each parameter of the SEM leads to an anamorphosis of the surface.
The modifications of the patameters imply the different results when a volumic structuring
element is used. On the other hand, the results are stable when a flat structuring element is
employed and the variation of the parameters does not bring about a saturation of the image
(the grey tone levels must be over 0 and under 255 for a 8-bits image).

iv) Test of the method on fractal simulations

The simulations (figure 3) that we have employed are created by an algorithm based on the
midpoint displacement (Barnsley et al, 1988). afterwards, they undergo a linear
anamorphosis on the photometric values so that the grey tone levels are spread between 0 and
255.

Figure 3 : simulations of fractal sutfaces of which dimensions are 2.3 (a) and 2.5 (b).

Several images have been constructed with different dimensions and tested by the method
described above. The curves log(Rs(f;A)) vetsus log(2\) are not rectilinear and varies in
function of the structuring element (figure 4).
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Figure 4 : log(Rs(f;A)) versus log(2A) by the flat structuring element (== =), the pyramid
(=++= ), the cuboctahedron (....) and the rhombododecahedron (=.-.) on the fractal
simulations of which dimension is 2.3 (a) and 2.5 (b). The theoretical curve is represented by

(—)-
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In all the cases, the calculated dimension increases with the implanted dimension (figure 5).
This interesting result allows a comparative study of the roughness of images, without
measuring in z-axis when the transformation by the flat structuring element is used. The
hypothesis of the self-affinity cannot be verified nevertheless we can quantify the roughness.
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Figure 5 : log(Rs(fA)) versus log(2d) by the flat structuring elements (a) and the

cuboctahedron (b) on the fractal simulations of which dimension is 2.3 (ce=)and 2.5, a).

v) Application to the non planar surfaces

Several surfaces have been studied (figure 6). The curves log(Rs(f,A)) vetsus log(2A) are not
lines (figure 7). In fact, the analysed surfaces are not fractal surfaces yet the notion of
instantaneous dimension is interesting to study the roughness for a fixed magnification.

Figure 6 : ground aluminium alloy for a magnification 350 (a); fracture surface of alumina C
for a magnification 750 (b).

The method presented in this paper allows to use the SEM to classify the surfaces by its
roughness with the instantaneous dimension.
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Figure 7 : log(Rs(f;A)) versus log(2\) with the flat structuring element (= = = ) and with the

cuboctahedron (.. ) on the surface of ground aluminium alloy (a) and on the fracture

surface of alumina C.

CONCLUSION

We have showed that the surfaces can be classified in function of their roughness by the
instantaneous dimension calculated by the described method with a fixed structuring element
and a fixed magnification. In addition, the influence of the intrinsic anamorphosis of the SEM
on the measurement has been removed using flat structuring element.
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