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ABSTRACT
The Neyman-Scott cluster process of regular 2k—tup1es - vertices of a k-cube
of random edge length in R , k=0,...,d, is considered. The attention is

focused on the properties of the spherical contact distribution function
H(2). It is shown that the corresponding probability density function h(¢)
is in certain sense intermediate between hp(@) of the parent process and

hcl(Z) of the Poisson point process of the daughter process intensity Acl'
Particular cases of point pairs and Zd-tuples of constant size in Rl, Rz, RB

as well as the effect of the edge length distribution are treated in detail
and the results are presented in a graphical form.
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INTRODUCTION

In the present contribution, an attractive combination of randomness and
regularity in the arrangement of a spatial point pattern is considered,

namely the Boolean model E (in R%) of regular clusters Ck formed by the

vertices of a k-dimensional cube, 0=k=d, In the full generality, we consider
a cluster process of the Neyman-Scott type with a typical cluster NO being

either a void set or a regular Zk—tuple Ck of points - vertices of a k-cube
centred in the origin 0, k=0,...,d, with the probabilities p—l’PO’pl""’pd
fulfilling the condition Zflpj=1. The size of the cube can be a random
variable with the distribution Fk(§)=Pr(akS€), where Zak is the cube edge.

Finally, the orientation of the cluster can be either random (preferably
isotropic) or arbitrary fixed. Such a special type of the Neyman-Scott
process generalizes the Gauss-Poisson process (Milne and Westcott, 1972;
Stoyan et al., 1987).

SPHERICAL CONTACT DISTANCES

The spherical contact distribution function H(Z) of E can be derived using
the well known formula valid for the Boolean model (Stoyan et al., 1987)

H(£)=1—exp[-ApEvd(No@B(O,2))], (1)

where vd(A) is the d-dimensional volume of a set A, B(O,r) is a d-ball of
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radius r centred in the origin 0. Further, the volume of the unit d-ball
will be denoted by Kd and the surface area of the unit d-sphere by Od.

Introducing the mean volume of dilation Gk(€)=Evd[Ck(€)®B(O,e)] and using
Lemma 1 from the Appendix, we can write for 2 -tuples Ck with a size distri-
bution FK(E)
k 0
G, (0) = Zal) (—1)1[’;'] f o Hf(e/g)dpk(g), >0, (2)
i=0
0
and GO(Z)=Kd£d. H?(C/E) are the intersection volumes defined in the

Appendix. Summing the contributions of clusters of different types, we
obtain the spherical contact distribution function of the considered
generalized Gauss-Poisson process

H(£)=1—exp(—ApG(€)), (3)
where G(&)=y p, G, (£). The probability density function h(£)=dH(2)/de is the
k 'k

main object of the present study, because it more or less sensitively
reflects the spatial arrangement of the points of the process. By comparison
of its shape with that ones of the PPP of either parent (Ap) or daughter

(Acl) intensity, the effect of the cluster size and and of its distribution

can be examined. The effect of the cluster size can be seen at best if € is
constant, say &£=a. Then for k>0

k 3
G (n=2* } (-1)1[’('] a? H(va). (4)
, i i
i=0
The general forms of Gl(e) are given in the Appendix (Eq. (A2)), the
formulae for H?(n), d=1,2,3, i=1,.,d are in Tbl. 1.

Table 1. Intersection volumes H?(n) (u = nz—l)

axl 0 1 2
1 21 n-1
nnz —Vﬂ+n2arc cos n_l 1 - Vu + nz % - arc sin n_l
e %ﬂng g(2n3—3n2+1) % Vu-1-(3u+2)arc cos u_1/2+n3arc cos u~1
RESULTS

Simplified versions of the generalized GP process have been examined in
detail, namely "pure" processes of clusters of selected type. Consequently,
p =1 for m=k and zero otherwise and the corresponding process Ek of regular
2 -tuples Ck in Rd will be denoted by the symbol (zk,d)t, where t=a for
clusters of constant size a and t=[a,b] for clusters of variable size
distributed uniformly on [a,b]. The parent Poisson point process intensity
was set Ap=1 in all cases.

The results are presented in a graphical form as a sequence of plots of the
p.d.f. h(¢ a=const.) for a=0,Aa,2Aa,... (clusters of constant size), or, as
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Fig. 1. Case (21,1)a - pairs of fixed Fig. 2.Case (21,2}a - pairs of fixed

size on a line. P.d.f. h(2, a=const. ) size in a plane. P.d.f. h(¢, a=const.)

for a=0,0.1,...,0.9. The scale units for a=0,0.1,...,0.9. The scale units
are 1/Ap for ¢ and Ap for h(¢,a). are 1/Vkp for ¢ and V)p for h(¢,a).

a sequence of plots of p.d.f. h(¢, a=const.,b=a+s) for selected values of a
and s=0,As,2As,... (clusters of size uniformly distributed on [a,b]). The
following cases have been examined: point pairs {21,1)a, (21,2)a,

1 1 2 3

{2 ’2)[a,a+s] and {2 ,B}a, quadruples {2 ,2)a and 8-tuples {2 ,S}a see
Fig’s 1 - B.

Fig. 3. Case (21,3)a - pairs of fixed si-
ze in a 3D space. P.d.f. h(¢,a=const.)

for a=0,0.1,...,0.9. The scale units are
A_I/S for ¢,a and A1/3 for h(¢,a)
P P

2. 2.5 2.5

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 4, Case (21,2)[a awe] = pairs of the uniform random size €ela, a+s) in a

plane. P.d.f. h(¢, at+s=const.) for a=0.1, 0.2 and 0.3, s=0,0.1,...,0.9-a. The
scale units as in Fig. 2.
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Fig. 5.Case {27,2} - quadruples of Fig. 6.Case {27,3} - 8-tuples of
fixed size in a plane. P.d.f. fixed size in a 3D space. P.d.f.
h(¢, a=const.) for a=0,0.05,...,0.9. h(¢, a=const.) for a=0,0.05,...,0.86.
The scale units as in Fig. 2. The scale units as in Fig. 3.
DISCUSSION

The p.d.f. of spherical contact distances h(2) describes the relative

frequency of the populations of points xeR™\E that "see" the point pattern E
in the same manner, which means that their distance to the closest point of
the pattern is just & The points lying very far from any point of the
pattern see even the closest cluster as a whole, namely as one multi-point
placed at a Poissonian position. Their h(¢) is that one of the parent PPP of
intensity Ap, hp(ﬂ) say. On the other hand, there is a community of points x

lying so close to some point of the cluster, that no other point of the same
cluster can lie in the contacting ball B(x,%). Such points see in their
neighbourhood only one point of the pattern in a Poissonian position and

their h(&), &min[€], is that one of the PPP of intensity Acl’ hcl(e) say.
All other points are in an intermediate situation and their frequency is
influenced by the both features of the pattern - Poissonian positions of

cluster centres and regularity of daughter positions around it.

This situation is clearly seen from Eq. (A2), which is valid for point pairs
but can be suitably generalized even for clusters of higher order. For any
k, we can write H(£)=Hcl(2) for &min[€] and H(€)=Hp(£).Q(E) for zminl(€],

where 1lim Q(€)=1. Similar relations hold also for h(£). Hence h (&), h (&)
cl p
L—0
are "master curves" of h(£), which accomplishes a continuous passage between
them depending on the distribution F(£) and on the values of k and d. It is
well known that HP(Z), Hcl(ﬂ) follow the Weibull distribution

FTE)=1—exp[—(2/a)d] (Johnson and Kotz, 1970), where a=(AKd)_1/d, i.e.

- )—1/d=2—k/da

c1®a The Weibull distribution is unimodal with the mode

acl=(h
* 1/d . *
L=a(1-1/d) and the mean o=al(1+1/d). Hence, we can write & =yo, where

7=(1—1/d)1/d/F(1+1/d) approaches 1 with increasing d and only weakly depends

on d (9=0.80, 0.98, 1.03 and 1.04 for d=2,3,4 and 10, resp.). With
increaging dimension d, ¢ very slowly increases from zero to infinity*(for
A=1, €=0,0.40,0,54 and 0.90 for d=1,2,3 and 10, resp.). Denoting by h the
modal frequency h(E*), we can simply prove the relation h;l/h*=€;/€;l=2k/d,

d>1. For given d, the distance between the modes E;, B:l increases with

increasing k (see Fig. 3 and 6), for fixed k, it decreases with increasing d



ACTA STEREOL 1993: 12/2 119
(see Fig. 2 and 4).

i) Point pairs (Zl,d}. The cases d=1,2,3 have already been solved in a
slightly different setting of the problem by Coleman (1974).

The case (21,1) with h(2) being a combination of two simple exponentials is
a unique one; note that only in this case is h(¢) discontinuous (in the
point ¢=a - Fig. 1). The remaining two cases are typical for d even
(complicated shape of h(f) with cusps - Fig. 2) and odd (a combination of
two smooth curves of sinmilar shapes, the first of which is the Weibull
p.d.f. of the degree of d and the other is Iﬂ£)~P&(£)exp[—Pd(£)] with the

polynomial Pd(l) of degree d given by Eq. (A2) - Fig. 3).

It can be seen by inspections of Fig’'s 1, 2, 3 that the greatest difference
between h(2) and hcl(e) occurs if the cluster size parameter a is smaller

than or comparable with the mode E;l. Recalling the above given relation
between the mode and the mean of a Weibull distribution, we can conclude
that if the inter-daughter distance 2a exceeds 40C1=22_1/d0p, then the

corresponding GPP of point pairs is not much different from the PPP with
Acl‘ at least from the point of view of the spherical contact distance (here
ab, Ucl are clearly the mean spherical contact distances in the PPP of
parent and daughter process intensity, respectively).

If the cluster size € is a random variable on an interval [a,b], the above
described situation can be seriously modified. Such a situation is shown in
Fig. 4 assuming the uniform distribution of & on [a,a+s] and examining h(¢)
for selected fixed values of a and gradually increasing s. The cusps at {=a
quickly vanish and h(¢) approaches hcl(e). Consequently, a cluster process

with a considerable dispersion of sizes would be little different from the
PPP of the same intensity.

ii) Higher order clusters (27,d),1<k=d. The situation now 1is quite
analogical to the case of point pairs, only the effects are more pronounced.
If &a (i.e. only one point of a cluster can be included in a ball of radius

2), h(@)Ehcl(E) of the PPP with the intensity Zkhp. Critical points of h(¢)

(an abrupt change of slope) can, occur at the values l=avi, i=1,2,...,k, at
which a higher number, namely 27, of points of the cluster can be embedded
in the test ball of radius ¢.

With increasing ¢, h(¢) again approaches hp(e) of the parent PPP. The above

mentioned relation between modes and modal frequencies explains certain

similarity between the cases (2d,d) —compare Fig. 5 and 6.

The graphical representation of h(&) clearly shows the advantages as well as
shortcomings of this function in the description of spatial arrangements in
point patterns based on the PPP. It reflects sensitively the differences in
a close neighbourhood of individual points, namely in a ball of radius

2-k/d
o

smaller than 4GEI=2 p’ or, taking into account that o approximately

d 1-k/d Al/d
Ay 8

equals O.Shl/ for d=1,2,3, smaller than 2 Within this range of

¢, the shape of h(¢8) quentitatively characterizes the examined clusters,
i.e. their size as well as the number of daughter points. A similar result
has been found also for regular clusters implanted in a translation lattice
of points (Saxl and Rataj, 1990).

As H(&) is in the considered case the capacity functional (Choquet capacity)
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T_(B(0,¢&))=Pr(BnZ#@) of the cluster process E on the class of d-balls, the

methods proposed by Molchanov (1991) for the estimation of T, A, k and a can
be applied. In this paper, the above results concerning the process of

Ck-clusters are obtained by considering a more general case of a Boolean

model with the primary grain being a non-random set Am of m points

characterized by the minimum inter-daughter distance a and the diameter
D=Diam(Am). Even in this case H(€)=Hcl(£) for £<a and H(Z)—AHP(E) for &D,

which can be used to estimate m and A. Further also, the first deviation of
H(L) from the Weibull distribution Hcl(l) occurs at f=a (compare Fig’'s 1+6),

which can be used to estimate a. Unfortunately, these methods break down
whenever clusters are random with a—o0.

The estimation of parameters of the Matern cluster process (daughters are
uniformly distributed in a circle of radius R and their number has a Poisson
distribution with the mean m) has been recently discussed and tested by
Stoyan (1992) and the estimation based on H(Z) was not recommended because
of 1its weak dependence on model parameters. Better results have been
obtained by estimation based on the K-function or L-function. It remains an
open question, whether such a conclusion is unavoidable also in the present
case. It can be expected that the analysis based on H(Z) could give
satisfactory results in the case of clusters of fixed size. Otherwise, the
results presented in Fig. 4 for clusters of variable size confirm the weak
dependence of H(E) on model parameters in more complicated cases.
Promising can be also another approach. The Voronoi mosaics generated by the
planar Gauss-Poisson process of the above considered type (pairs and
quadruples of points) have been tested and compared with the Poisson-Voronoi
mosaic of the density Acl by Kohitek and Saxl (1993); higher moments of cell

area and perimeter distributions differ considerably within the whole range
O<a50.5/Vkp and can be detected up to azl/VAp.
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APPENDIX

We-will prove the following Lemma:
Lemma 1. Let Cm(€)={0,25)m be the Zm—tuple of vertices of an m-cube embedded

in Rd and B(0,8) the d-ball of radius & centred in the origin 0. Then the
volume of the spherical dilation Cm(E)GB(O,C) is

m
_,m _ayifm) .d . d
»,(C_(£)0B(0, 8))=2 IS [1] e e, (A1)

where Hg(n)=xdnd is the volume of a d-ball of radius n, H?(n)=0 for 05n251

n.
i
and H‘l.’(n)=fﬂ‘}_}[»/ 2°-¢2 ]dc for 1%>iz1, where n =V n?~(i-1),
1
Proof: Let CmECm(l). Then Cm®B(O,n)= U B(Z,n) and by symmetry we can write
LeC
m

val U B(E,0)=2" Use.m [(-w,u”’x(—m,m)""”’]]=
m

CeCm

=2" [B(O,T))n[(—m, 11”‘x(-m,m)d'”’]]=

m
=2m{vd(B(O,n) )-v, [B(O,n)n[igl(xeﬂ?d;xfl)”}:

=2 {v (B(0,7))- )j( 1) [] d[B(O,n)n{xe[Rd;xl,..., x.zl)]}.
i=1 !

Denot1ng the volume v B(O n) by H (n) and » [B(O,n)ﬂ(xemd PX s X, =1} ] by
H (n), inserting 8—En and using the homogeneity of degree d of the volume

vd, we obtain (A1). Further

d
vd[B(O, 1) { xeR PXpa e xl.zl) ]—del. ; 'dei_Idxiﬂ";IxB(X)dxd
1 1
The integration of the characteristic function xB(x) of B(0,m) over R

(the last (d-i) integrals) gives the volume of a (d-i)-ball of radius

i 172
[nz— % xz ] , hence

J1J
vy ded
H (n)=x .jAX I [n = Z X, ] . dx, ,
1Y !

1 J=

2 1/2 2 i-1 5 172

where yy= [n —(i—l)] and yj=[n -(i-j)- % Xj ] » 1=j<i. The recurrence
J=1

relation then follows immediately.
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It follows from the definition of H (n) i>0, that their meaning. is the
2—lx volume of the intersection of 2 balls of radius m centred in the

points forming Ci' An important property of H?(n), i=0,...,d, 1is their

linear dependence. It can be shown that Hg(n)=(—1) [1— E (- 1)121 d[.]H?(n)]
i=0

for mzvd, , which can be used to calculate Hg(n) missing in Tbl. 1.

An  explicit sqlution can be given for the spherical dilation
vd(Cl(a)®B(O,£)) = 2Kd£ ZadH?(Z/a) of a point pair of constant size a (the

point spacing 2a) in R®. We obtain

Zd for £=a,

ZKd
vd(Cl(a)®B(0,ﬂ))={ d (A2)
¢ [1+hd(a/£)] for £=za,
T?édi (t) for d odd, (d)
where hd(r)={ 2 (d) . Here ? (r) and ?d 1(1:)
2re sin T + V1-7t (T)fOP d even

are the polynomials of the degree (d-1) with alternating coefficients

d-2
Ko, 20, . K, . ;
“éqil = ~%J Y agiig—zgi—gi— (—1)J, %, = 0, j= 0,1,...,—q§g for d even and
o i=j 2i+1 2i J
20 K
~(d) _ “Ta-2j 25 i o~ d-1
21 = W)( 1) ) 062j+1—0, J—O,l,z,...,T for d odd.
+1
Then we obtain
Table 2. Polynomials %éfi(r) and ?;fi(r).
~(1) (2) 2T
0 () 1 P 1 () =
%(3) 1,, 2 (4) 2 3
P > (t) §(3 T) P 3 (t) W §E~(51 2t7)
5(5) T .~ . 2 4| _(6) 2 3..5
P a () §(15 10t7+3t7) | P 5 () T§E(331 26T +8T")

Note that hd(T)=1—2TdH?(T_}/K d is defined and increasing on [0,1] and
hd(0)=0, hd(1)=1.




