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ABSTRACT

A Boolean model is considered where the typical grain wM results from a random
isotropic rotation of a deterministic convex set M of positive volume. An estimator for
the set M is proposed.
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INTRODUCTION

The Boolean model = in R? is defined to be the union

E= | (i +Z0) (1)
zi€llp

of iid random sets Sy, =4, . .. (called the grains) driven by the stationary Poisson point
process II4 with intensity A. Estimators for numerical parameters of = are well-known,
see Serra (1982) and Stoyan, Kendall and Mecke (1987). Estimators for the mean body
(the Aumann expectation) of the grain were considered in Weil (1991, 1993).

Here we consider the case where the typical grain Zg = wM is obtained by a random
isotropic rotation w of a deterministic convex set M. This set is supposed to have a
positive Lebesgue measure. Since it is convex, M coincides with the closure of its interior.

Note that because of the isotropy the mean body is not informative, since it is equal
to the ball with the same surface area as M. The approach here follows to some extent
the idea elaborated in Molchanov (1992, 1993) for the case of completely deterministic
grain Zy. It yields a set-valued estimator for the grain which is based on the examination
of the tails of the covariance function (which is obtained through two-point covering
probabilities). Namely, the covariance C(re) = P{o € E,re € =} decreases to the square
p? of the volume fraction p as 7 — oo and the value r providing larger than p? — ¢ values
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of C(re) gives an e-biased estimator for the width function of the grain for each direction
e € S, Here ¢ > 0 is a bias parameter. The width function of M is determined as
bar(e) = har(e) + har(—e), where hps is the support function of M. Let us suppose that
the width function bas takes its maximum dps = sup, bar(e) at a unique point, denoted
by eo.

By definition, the covariance is given by the capacity functional of = on the family of
two-point sets. In this paper it will be shown that the capacity functional of three-point
sets may be used to estimate the shape of the grain when =y = wM. This corresponds to
the fact that three-point covering probabilities determine the distribution of our Boolean
model, see Lesanovsky and Rataj (1990) and also Serra (1982, p.498).

FINITE POINT COVERING PROBALITIES
The capacity functional of the Boolean model (1) is given by
T(K)=P{KNEZE+#0}=1—exp{-AEu(Zo ® K)}, (2)

where p4 is the Lebesgue measure in RY, K = {—a:2 € K} and K is a compact set, see
Stoyan et al. (1987). In particular, for finite-point K we define

(1, 2. .., 80) = T({—21,—22,...,—20n}). (3)

Evidently, for n = 1 the value p(z) = p does not depend on z.
The covariance C(z) is related to the function p(z1,z;) on two-point sets, namely,
C(z) = 2p — p(o, z), where o is the origin. Furthermore, put

Y(21,29,...,2,) = —log(l — p(z1,22,...,2x)). (4)
As above, 1(z) = = —log(1 — p) for n = 1. It follows from (2) that
Y(z1, 22, ..., Tn) = P(0,T9 — T1,..., Ty — 1)
= MEpy(EoU (Eo+ag—21)U U (B0 + 2, —21)).
Furthermore,
21p —p(o,re) = AEpg(wM N (wM +re)) = Aym(r),

where e is a unit vector, ypr(r) is the isotropized covariance function of M, see Stoyan
and Stoyan (1992, p.140). Introduce the function ¢ as follows,

dum(o,z,y) = Bpa(wMn (WM +z)0(wM +y))
= A7 ($(0,2,y) + 3% — (0, z) — $(0,y) — (0, y — 2)) .

In particular, @ar(o, z, ) = ya(||z]])-

A natural estimator for the capacity functional and, therefore, for covering probabi-
lities, is the empirical capacity functional T' considered in Molchanov (1991, 1992) and
Molchanov and Stoyan (1993). The functional T is evaluated by the observation of =
within a certain window W. For formulating limit theorems, W is replaced by a family
of expanding windows W,, with W, T R? for s — co. Then estimators Ts, s > 01s
considered. For compact K,

Ty(K) = pa((E® K) N (W, © K))/pa(W, © K).
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Using 7%, the empirical functions p, and ), are defined analogously to (3) and (4). The
Glivenko-Cantelli theorem for the capacity functional (see Molchanov, 1991) ensures that,
for each compact Ky and n > 1, :

vs(n, Ko) = supEK [p(z1,. s @) = Po(@1, .., 20)| = 0 as. as s — oo, (5)
L1yeesTn 0

The same is valid for 1), provided T'(K,) < 1.

ESTIMATION OF THE SHAPE

In the following we use a similar approach as in Molchanov (1992, 1993). First, we define
a set M(e, 8) which approximates M and is determined through the covering probabilities
and some "bias” parameters ¢ and § (these parameters determine the quality of approxi-
mation). Replacing the covering probabilities by their empirical counterparts produces a
biased estimator of M.

For e € [0,1] put

r(e) sup{r > 0: Epa(wM N (wM + re)) > epa(M)} (6)

sup{r > 0: 24 — 3(o, re) > e},
Then, for e | 0, we get r(e) T dpy = b(eo) (the maximum of the width function).
Furthermore, put . = {w:wM N (WM + reo) # 0}. Then Q. | {wo} as e | 0, where

wp is the unit element of the group of rotations.
For 0 < § < 1 let us define the set

M(e,6) = {z: dum(o, r(e)eo, z) > 8¢} . (7

Theorem 1. In the Hausdorff metric M(e,8) = M @ Aq as e | 0, where Mg is the
singleton M N (M + dprey).

PROOF. Evidently,

M(e) = | {ywM +y > A} € M(e,6) C U oM +yna. £0) = M),
wEN, wEN,
where
A, = U wM N (wM+r(e)e) | Ay as €0
weN,

(since the width function by has only one maximum point). Furthermore,

M.(e) = [ {y cw(M o AL},
weN,

where A! = Uvea, w A | Ag ase | 0. Since Qe | {wo}, we get M.(e) T M + dpe and
M*(e) | M + dpre. Henceforth, M(e,6) approximates M up to a shift. O

Replacing the finite-point covering probabilities in (6) and (7) by their empirical coun-
terparts yields the random closed set Ms(e,E), which can be used as an estimator of
M(e,6). Meanwhile, the empirical analogue of r(¢), see (6) will serve as a (biased) esti-
mator of dy.

_ The following theorem establishes the strong consistency of the set-valued estimator
M;(e, §) within an arbitrary compact set.
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Theorem 2. For each compact Ky, in the Hausdorff metric,
Ms(e,ﬁ) NKo— M(e,6)N Ky as as s— oo.

PROOF. First, #,(¢) — r(e) a.s. as s — oo, since the function yas(r) has a strictly
negative derivative for each 7 < dps. Thus, r(e + () < 7,(¢) < (e — () for {; — 0 a.s. as
s — oo, Moreover, (; = O(v,(3, Ko)). Without loss of generality we can take the same (;
to prove as in Molchanov (1992, 1993) that

M(e — (564 () C My(e,8) C M(e+ (o, 6 —C).

Now the result follows from the continuity of finite-point covering probabilities and (5).
O

Since the estimator of M (g, §) is determined by three-point covering probabilities, the
estimation method can be applied to censored abservations as it has been already done
in Molchanov (1992) for the case of two-point covering probabilities.
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