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ABSTRACT

The paper is devoted to the ten years anniversary of Baddeley’s vertical sections, the first anisotropic
sampling design in stereology. A general theory is presented which includes vertical sections and
vertical projections as special cases. The model based approach is applied, variances of intensity
estimators are studied.
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INTRODUCTION

Classical stereological formulas concerning the estimation of length intensity Ly and surface intensity
Sy require one of the following isotropy assumptions: either the probes are generated with isotropic
orientation (IUR) or the geometrical structure can be modelled by an isotropic random set.. If neither
the probe nor the structure is known to be isotropic, special formulas of anisotropic stereology have
to be used.

Baddeley (1984) developed an ingenious anisotropic sampling design of uniform vertical se-
ctions (VUR), which enables an unbiased and efficient Sy estimation. More recently, Gokha-
16(1990) and Cruz-Orive and Howard(1991) worked out the design of vertical random projec-
tions for the estimation of Ly . Their approach is essentially design-based, evaluation of estimation
variances is in most cases an open problem.

In the presented paper the model-based approach is applied, stationary random fibre and surfa-
ce processes are studied. The notion of a projection measure was developed for anisotropic ran-
dom measures in Benes§ et al.(1993) using systematically the Buffon transform. Special case of
this measure evaluated in planar section (projection) of the surface (fibre) process, respectively, is
in fact the model-based analogue of the quantity ¥ in Baddeley(1985) and Cruz-Orive and
Howard(1991). Second-order analysis enables to express variance of intensity estimator based on
this measure.

In the following text first the theoretical background is rewieved in general d-dimensional case.
Further we proceed in three dimensions, first the relation to recent intensity estimators is explained
and finally some remarks to practical estimation and estimation variances are presented.
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THE BUFFON TRANSFORM

Let (R, B,v)? be the d-dimensional Euclidean space with Borel g-algebra and Lebesgue measure v
and (M, M)? the measurable space of axial orientations, i.e. a hemisphere in R%. The general index
d is omitted if possible in the following, e.g. R? = R, from the point of view of applications the most
important cases are d = 2 and d = 3.

For any probability measure P on M the Buffon transform Fp of P is a nonnegative function
on M defined by

Fp(l) = /M | cos (I, m) | P(dm), | € M (1)

and for two probability measures P, @ on M the Buffon constant

Fra= [ e = [ Fo)p(a) = Fop )

The Buffon transform of a uniform probability measure & on M is a constant function denoted

Fu(l)=k, forall le M 3)

if either P=U/ or Q=U then again Fpg = k. Elementary integration yields ky = % for d = 2 and
K3 = % for d = 3.

The function Fp(l) in (1) may be interpreted as the mean projected length of a unit segment
in R of orientation | projected onto a random line m € M with orientation distribution P. A dual
interpretation is possible, as the mean projected length of a unit random segment with orientation
distribution P, projected onto a line I. If both the segment and projection direction are random
with orientation distributions P and Q, respectively, duality relation (2) shows that the interchange
of both distributions does not influence the resulting mean projected length Fpg.

Let ® be a stationary random fibre process in R9, see Stoyan et al.(1987). The weighted fibre
process ¥ is derived from @ by joining to each point z of ® an element of M corresponding to the
tangent orientation of the fibre at z. The intensity measure A of ¥ can be written as ( Stoyan el
al., 1987)

A(B x D)= E¥(B x D)= Lv(B)R(D), BeB, De M

where the real constant L is the mean fibre length per unit d-dimensional volume in R and the
probability measure R on M, called the rose of directions, is the distribution of tangent orientations
of fibres.

Consider a (d — 1)-dimensional testing hyperplane H(l) with orientation ! of its normal and
investigate the intersection ® N H(!), which is a random point process. Let P(I) be the mean number
of intersection points per unit (d — 1)-dimensional area of the hyperplane. Then (Hilliard, 1967)

P(l) = LTz () (4)

holds. In particular, if @ is isotropic, i.e. R=U, then P(l) = P is constant and equal to P = kL
Specially this formula is expressed as Pp = %LA ford =2 and Py = %Lv for d = 3.

For the second order anisotropic stereology Buffon transform of second order is a useful tool.
Let W) be the two point weight distribution of ¥, which is interpreted as the joint distribution of
weights (fibre tangent orientations) in points z,y such that y — ¢ = h, under the condition that
z and y are the points of the weighted fibre process. The special type of the second order Buffon
transform which will be used here we denote for fixed @

Ig(h) = /M /M Fo(m1)Fo(ma)Wh(d(my,m3)), h€ R (5)
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THE PROJECTION MEASURE

For given I € M and B € B with ¥(B) > 0, we denote Pry(B) the projection of B onto [ (i.e. onto
the one-dimensional subspace R; of R with orientation l). For y € Pri(B), let N, be the number of
intersection points of ® N B with the hyperplane H(l,y) with normal orientation [ including y. N, is
a random function; we assume further finite second moments for all y € R). For a fixed realization
¢ of @ N, is measurable on R;. Then a random measure ®; on B is defined by

@ (B) = /Pr - N, dy (6)

that means ®;(B) is the sum of projection lengths of all fibres from ® N B onto . Generally, for a
given probability measure Q on M a projection measure on M is defined as

vo()= [ @(B) o) ("

Theorem 1 The intensity measures Ay, Ag corresponding 1o ®;, ®g respectively, are equal o
M(B) = E®i(B) = Lv(B)Fr(l) (8)
Ag(B) = E®g(B) = Lv(B)Fro, B € B 9)

where R is the rose of directions of ®.

Proof: We use the Campbell theorem E [ f(z, m(z))®(dz) = L[ [ f(z,m)R(dm)dz (Stoyan
et al.,1987), which holds for any nonnegative measurable function f on R x M. Clearly

®i(dz) =|cos §(m(),!) | B(dz) (10)

and therefore ®g (dz) = Fg(m)®(dz). (8), (9) is then obtained directly from the Campbell theorem
by putting f(z, m) = 1p(z) | cos I(m(z),1) | and f(z,m) = 1p(z)Fo(m), respectively, where 1p
is the indicator function of the set B € B.

Concerning the second order analysis the following general result will be used, see Stoyan et
al.(1987). Let ¥ be a stationary random measure on (R, B) with intensity constant A and reduced
second moment measure K defined by

BUBHE) =¥ [ [ 1a(e)io(e + mE(h)d (11)
RJR
for any B,C € B, 1p denoting the indicator function of the set B. Let gp(z) = v(BN B_;), assume
that the pair correlation p(z) of ¥ defined by
p(z)de = K(dz), =€ R
exists. Then
vart(8) =7 | [ g (a)(p(e) - 1)ds]. (12)
R

For the exceptions of this formula see Ohser(1991), but for fibre processes it is valid. In the
following we study specially random measures corresponding to the stationary fibre process ®.

The relation between pair correlation functions p(z) and pg(z) of measures ®, @, respectively,
can be expressed by means of the second order Campbell theorem (Schwandtke, 1988):

E [g Jp f(z,y,m1(2), ma(y))®(dz)B(dy) =
L2 [y S Sirnt £+ by, ma)Wa (d(my, ) )p(h)dhde (15)

holds for any nonnegative measurable real function fon Rx Rx M2,
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Theorem 2 For the pair correlation functions p, po of random measures ®, Do, respectively, holds
for almost allh € R

p(h). (14)

Proof: (see Benes et al., 1993). Putting f(z, y, m(z), m(y)) = 1a(z)1c(y)Fo (m(z))Fao(m(y))
n (13), B,C € B, one obtaines using (10)

E®o(B)do(C L:’/ / 1p(z)lc(z + h)Ig(h)p(h)dhdz
On the other hand formula (11) applied to ®¢ yields

E<I>Q(B)<I>Q(C):LZ}%Q/R/ng(:n)lc(zz—kh)pg(h)dhda:

As these both equalities are valid for any Borel B and C, (14) follows.

Using (9), (12) and (14) we obtain the corrollary

var®q(B) = L* /RgB(m)(Iq(z)p(m) - _'F%Q)d:v (15)

Example 1: An analytical evaluation of the above formulas will be demonstrated on an anisotropic
Boolean segment process ® in R, which is defined as a union of line segments S the centres of which
form a stationary Poisson point process with intensity constant A. Assuming that the orientation
distribution R of segments is independent of the distribution H of segment lengths, R is in fact
the rose of directions of ®. Denoting H fooo ydH (y) the expected segment length, the intensity L
of @ is L = AH. Further let f(r) = % (fy 22dH (z)+ [ (2zr — r?)dH(x)) be the mean length of
SN0 D, under the condition that a random segment S hits the origin 0, D, being the sphere centered
in orlgln with radius 7. Then for the Boolean segment process ® it holds (Benes et al., 1993)
var®(B) = L [;° [, 98(r, 1)df (r)R(dl) and

vardo(B) = L /0 b /,. 5 DFBRA) (16)

in polar coordinates @ = (r,{),dz = r¢~'drdl, z € R, r real magnitude, | € M.

ANISOTROPIC SAMPLING DESIGNS

There is a pair of dual formulas in stereology: Sy = 4LA by means of IUR planar sections and
Ly = ~L,4 by means of IUR projections of a slab of thickness ¢. Our aim is to express these
quantltles by means of VUR sections and projections, respectively, using the model-based approach.
Consider a stationary random surface (fibre) process ¥ (@), in R3, respectively. Define z axis to be
vertical axis and any plane V; = {(z,y,z) : x cos€ + ysiné = 0},£ €< 0, 7) as vertical plane.

Let D = {(z,y,z) : 2% + y® + 2% < 1} be the unit sphere and D¢ = DN Vg circular subsets of
vertical planes. Let B¢ be a unit cube centered in origin with one vertical edge and orientation & of
an edge in horizontal plane. Put BY = B; NV, €& €< 0, 7). Let Ve, ®¢ be random fibre processes,
where ¥¢ = ¥ N D¢ and ®¢ be the orthogonal projection of ® N Be onto BJl7 Let Q1, Q2 be fixed
probability measures on M? defined by

Qy(dl) = %sin ldl, (17)

1
Q2(dl) = 5 | cosl|dl, 1€<0,m)
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where ! is interpreted as the angle from horizontal axis in any vertical plane V;. For these measures
it holds

Fa.(m) = %[msinm + cos m], me<0,1)
= 3[(m — m)sinm — cosm], me< 5, 7) (18)
FQ,(m) = [(% —m)cosm +sinm] me<0,7)

and given the orientation distributions R, Wy of the process, formulas for For, Io(h) follow from
(2) and (5).

Theorem 3 For the intensities Sy, Ly of U, ®, respectively, il holds

- 2 " 3

Sy = w?(DE)E/o WS, (De)d¢ (19)
— 2 " 3

Ly = =3B E‘/ﬁ Doy, (BE)dE (20)

;luherj \I'E?1 ; CDE?2 are projection measures corresponding to W&, &€, (It is v¥(Dg¢) = m and v3(Bg) = 1
ere.

Proof: Let Pr(l,£) be the intensity of intersection number of ¥ on test line in M3 with spherical
coordinates ({,£), then using (4) and (9)

S =9 = 1/ / Py(1,€) cos ldIdé = 1/ / La(€)Fr, (1) sin ldlde =
mTJo J-z ™ Jo Jo

2 [7 2 t
== | La(€)Friqdé = ———— | ET (De)d
7r/O A(E)Frq dE 7”12(05)./0 0. (De)dé
where L4 (€), R is the intensity, rose of directions of ¢, respectively. To prove (20) denote the edge
length of the cube ¢, P, (1,{),PE(1) are intensities of intersection number on the plane with normal
orientation (/,£), linear projection of this plane onto V, respectively. Then ’

Ly = 2P, = %/ / Pa(l,€) | cosl | dide =
0 0

R A . _ 2 ¥ out imp
_E/o /0 PL(I)Icosl|dld§~WBf)/o B, (BR)de.

Omitting expectations in (19), (20) one obtains unbiased estimators of intensities. The theory of
the previous section enables to evaluate variances of these estimators using (15) and (18).

Example 2(cf. Baddeley, 1985): Consider a surface process ¥ of horizontal circular plates of
diameters d, centres of which form a stationary Poisson process of intensity A in R3. Then W¢ is

a Boolean process of horizontal segments of mean length % and intensity of centres d\ for each

€ €< 0,m). Then it holds ua7'2‘IIEQ(DE) = }";‘F J, where J = [ gp,(r)df(r) using (16), where
Fa(0) = % For comparison the IUR sampling with a € M3 being the normal orientation of test
plane Ty, Dy = DN Ty, ¥* = ¥ N T4, yields the variance of intensity estimator uar(%\ll"(Da)) =
Ad2J +[Ad*v3(D, N2 (- 15)- That means VUR sampling yields smaller variance than [UR, sampling

here.
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DISCUSSION

The given ¥ in Example 2 is invariant with respect to rotations which preserve z coordinate, therefore
the evaluation of variance in the VUR case is straightforward.

For ¥ without this property the formula var\I’g(D) = varE(\I/fQ(D) | €) +Evar(\I!g(D) | €) has
to be used, where the outer variance in the first term is with respect to uniform distribution of £. In
fact, the two-stage sampling (first step uniform ¢, second step according to Q) is naturally described
by conditional probabilities and expectations.

Using systematic sampling of several £ on M? and estimating the integral in (19), (20) as
S F(&)de = b0 Fla+ kb),b = I,m > 1,a €< 0,b) one can use recent methods by Cruz-
Orive(1993) to get estimation variance. In the model-based approach the covariance of ‘IIEQ(DE) in
pairs of sampling points is desired to apply it.

For practical estimation the measure ®¢ is further discretized. There are two possibilities. The
first natural method makes use of the representation of ®4 by means of intersection counting, see
(6) and (7). Special form of @; in (17) leads to cycloidal test lines (Baddeley, 1985) and cycloidal
test surfaces (Gokhale, 1990).

The second method is based on formula (9) and estimation of For on vertical planes measuring
fibre tangent angles. The functions Fg(m) in (18) are symmetric around 7 and for projection
purposes it suffices to consider them on the interval < 0, %) only. Estimation procedure like this for
vertical projections is described in Cruz-Orive and Howard (1991), p.108.

Discretization of ®q contributes to the estimation variance expressed above. General evaluation
of this contribution is still an open problem, special results for different sampling designs than those
discussed here are e.g. in Kiéu, Vedel-Jensen (1993).
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