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SUMMARY

Osteocyte lacunae in whole mineralised bone were observed directly without sec-
tioning, using the TSRLM. Inside a sampling region the three-dimensional coor-
dinates of the centre points of the lacunae were recorded. Preliminary statistical
analysis is reported here. Evidence of systematic packing of lacunae was found.
Biological variability was considerable for Ny but negligible for the spatial inter-
action function K.
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1 INTRODUCTION

A full understanding of the spatial relationship between particles in a three-
dimensional structure can only be achieved by collecting three-dimensional coor-
dinate information. The cost of collecting such data has always been considered
prohibitive using standard histological technique. By contrast, the mapping of
2-dimensional coordinates of particle profiles in sections is commonplace. Sta-
tistical methods for analysing 2-dimensional point patterns are well-developed
(Ripley (1977), Diggle (1981)) and have been applied in microscopy by Apple-
vard et al. (1985) and Pedro et al. (1984). It is worth noting that the statistical
theory extends, with few modifications, to 3 and higher dimensions.

Petran et al. (1968) described the tandem-scanning reflected light microscope
(TSRLM) which permits the non-destructive observation of internal structures
in whole tissue by taking thin optical sections at the focal plane of the objective
lens. This plane may be moved up and down through the tissue, to sample
a complete three-dimensional volume. The application of this microscope in
examining whole bone and tooth specimens has been described by Boyde et al.
(1982). The numerical density Ny of osteocyte lacunae in whole bone has been
measured directly on the TSRLM by Howard et al. (1985) using an unbiased 3-
dimensional counting rule analogous to the 2-dimensional Gundersen tiling rule.

In this paper we present a method for the unbiased collection of 3-dimensional
coordinate data for the locations of any particles which can be visualised in the
TSRLM. The method is demonstrated on osteocyte lacunae in primate monkey
skulls. A statistical technique for analysing such data is presented and demon-
strated on the primate data. Tentative conclusions are drawn about the spatial
distribution of osteocyte lacunae. The results also provide information about the
inter- and intra-animal variability in Ny and K (r) estimates.

2 DATA COLLECTION

The parietal bones of three fully articulated adult Macaque monkey (Macaca
fascicularis) skulls from the collection of University College London were used.
The right parietal bone was examined, in each case, approximately 1 cm lateral
to the sagittal suture and 2 cm posterior to the coronal suture. The skulls were
mounted on plasticine on a moving stage placed beneath the TSRLM. Immersion
oil was applied and a x60, NA 1.0 oil immersion objective lens (Lomo) was
focussed at 10 pm below the cranial surface. The TV image was produced by a
Panasonic WB 1850/B camera on a Sony PVM 90CE TV monitor.
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A graduated rectangular counting frame 90 X 110 mm (representing 82 x 100
pm in real units) was marked on a Perspex overlay and fixed to the screen.
The area of tissue seen within the frame defined a subfield: a guard area of 10
mm width was visible on all sides of the frame. Ten subfields were examined,
arranged approximately in a rectangular grid pattern, with at least one field
width separating each pair of fields. The initial field position was determined
randomly by applying a randomly-generated coordinate shift to the moving stage.
Subsequent fields were attained using the coarse controls of the microscope stage,
in accordance with the rectangular grid pattern.

For each subfield, the focal plane was racked down from its initial 10 pm depth
until all visible osteocyte lacunae had been examined. This depth d was recorded.
The 3-dimensional sampling volume was therefore a rectangular box of dimen-
sions 82 x 100 X d microns, called a “brick”. For each visible lacuna, the fine
focus racking control was adjusted until maximum brightness was obtained. The
depth of the focal plane was then recorded as the z coordinate of the “centre
point” of the lacuna. Without moving the focal plane, the z and y coordinates of
the centre of the lacunar image were read off the graduated counting frame. This
required a subjective judgement of the position of the centre of the 2-dimensional
image. Profiles were approximately elliptical and the centre was considered to
be well-defined. Accuracy of the recording procedure was tested by independent
repetition (by the same operator and by different operators) and found to be
reproducible to &2 mm on the screen.

A lacuna was counted only if its (z,y) coordinates lay inside the 90 x 110mm
counting frame. The (z, Y, 2) coordinates were manually recorded and later en-
tered into a mainframe computer for analysis.

3 STATISTICAL METHOD

3.1 Background

Techniques for the analysis of 2-dimensional point patterns are described by
Ripley (1981) and Diggle (1983). A popular method is based on the K-function
which describes the interaction between pairs of points in the pattern (see, e.g.
Diggle, 1983, 46-49 and 70-89). Given a point pattern, we arbitrarily choose one
of the points in the pattern as a reference point. For each radius » > 0 we define
K(r) to be the mean number of points in the pattern that lie within a radius r
of the chosen point, divided by the mean number of points per unit area Ny4:

89



90 BADDELEY AJET AL: PARTICLES SPATIAL DISTRIBUTION

K(r) = E(number of points within distance  of an arbitrary point)

where I denotes expected value (i.e. mean) taken over all possible outcomes
of the random pattern. This definition applies to any stationary (statistically
homogeneous) random point process. A 3-dimensional version of the X function
is exactly analogous:

K(r) = E(number of points within distance r of an arbitrary point)

L )

where as usual Ny is the expected number of points per unit volume.

Thus K(r) is a measure of how many points are expected to be found within r
units of a typical point in the pattern. It is a theoretical characteristic based on
a ‘population average’ over all possible outcomes of the random point pattern.
In this sense it can be compared to the stereological population averages Vv, Sy
etc. Methods for estimating K (r) from data are discussed in the next subsection.

Interpretation of K(r) in 3 dimensions is similar to the 2-dimensional case out-
lined by Ripley and by Diggle. If the pattern is completely random in the sense
that points in different sub-regions are statistically independent (the Poisson pat-
tern) then the mean number of points inside a sphere of radius r is simply Ny
times the volume of the sphere, so we have

K(r) = —mr®

for a Poisson pattern. Alternatively, if points tend to cluster or “attract” each
other, then typically K(r) > §7r1'3 for values of r corresponding to the range
of attraction. If the points “repel” one another or are systematically spaced,
typically K(r) < 437!'1‘3 for some values of . In this way the K function constitutes
a simple and easily-interpreted summary of the pattern.

It should be noted that the K function, along with alternative measures of spatial
interaction described in Chapter 5 of Diggle (1983), is only a summary statistic
and should not be read as a characterisation of the point pattern. For example,
two quite different point patterns may have the same K function (Baddeley
& Silverman, 1984). This insensitivity is a feature of most current techniques
in spatial statistics. Analysis of a point pattern should normally include several
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alternative measures of interaction. In the present report, for brevity and because
of some special features of the data, we shall use only the K function.

3.2 Estimation

The quantities N4, Ny, K(r) are theoretical averages over all possible outcomes
of a hypothetical random point process. A set of data from a real, observed
point pattern should be regarded as just one single outcome of a random point
process. On the basis of such data, we can only estimate the true K function.
The estimator of K (r) based on the data is denoted by K(r).

Let the sampling region (in which the points were observed) be denoted by B.
Number the points in some arbitrary fashion 1,2,...,n and let d;; be the distance
between points ¢ and 7. In 2 dimensions, the usual estimator of K(r) is

R() = 2B 5 ®)
di;<r

where w;; is an “edge-correction factor” equal to the proportion of the circum-
ference of the circle with centre at point ¢ and radius d;; which lies within the
sampling window B. See, e.g. Diggle (1983, p. 71). For each fixed r, R'(r) is an
approximately unbiased estimator of the true K(r) of the random point pattern.
The bias increases with r. Ripley and Diggle generally recommend the estimate
of K(r) should only be employed for r < D/4 where D is the minimum diameter
of the sampling window B.

In 3 dimensions, the analogous estimator of K(r) is
. volume(B =
() = 2B 5 @
n dij<r

where w;; is now the proportion of the surface area of the sphere with centre at
point ¢ and radius d;; which lies within the sampling volume B.

In stereological terms, K(r) in (3)-(4) is a ratio estimator. First consider the
estimation of Ny. The usual estimator is

4 n
me— 5
Ny volume(B) (5)
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where n is the number of points observed in the sampling region B. This is the
best (i.e. minimum variance) unbiased estimator of Ny. Define

Y(r) = (Nv)'K(r) (6)

This is the expected number of ordered pairs of points that are less than r units
apart, with the first point lying in a unit volume. Moment theory of stationary
processes (e.g. Stoyan and Mecke (1983), p.55) shows that

f/(r) = voluxile(B) dgs:rw,-‘jl (M

is an unbiased estimator of Y (r) for any stationary 3-dimensional point process.
The sum is over pairs of points lying in the sampling window B. Again this is
the best (minimum variance) unbiased estimator. Comparing (4) with (7) shows
that

(8)

—

2
~—
~N

is the ratio of an unbiased estimator to the square of another unbiased estimator.

3.3 Stereological aspects

Typically the methods presented by Ripley (1977) and Diggle (1981) for 2-
dimensional point patterns assume that the data consist of a single point pattern
observed in a defined region. Indeed, this causes theoretical difficulties, because
the data are not independently repeatable in the usual way, and a direct estimate
of the variability of estimators (2), (4) is unavailable.

Stereological sampling is quite different. Usually the sampling is (conceptu-
ally) repeatable, and the data contain replicated observations (e.g. sufficiently
large numbers of plane sections, tissue blocks and experimental animals). Miles
(1978) explains the importance of proper specification of the stereological sam-
pling regime and of any assumptions made about the experimental material. The
importance of replication at various levels of the experiment, and of quantifying
the variability at each level, is stressed by Gundersen & @sterby (1981).

Suppose we are able to observe a 3-dimensional point pattern inside several sam-
pling windows B,..., B,, and the windows are far enough apart to be regarded



ACTA STEREOL 1987; 6/SUPPL ||

as independent observations. We could estimate K(t) by the pooled average

A

Kaue (1‘) =

N

1 A
~ > Rilr) 9)

I
-

where Ki(r) represents the estimator in equation (4) derived from the point
pattern observed in window B, for [ =1, ... ,m.

The standard deviation of this estimator is approximately 1/1/m times the stan-
dard deviation of K;(r). The latter can be estimated from the data by the usual
formula for the sample standard deviation. Note that IA(‘M () has the same bias
as each .of the individual estimators f{;(r), ie. IE',,,,,(r) is an approximately un-
biased estimator of K(r) for small r, but the bias does not decrease with the
number m of samples.

The simple average (9) is justifiable if the sampling volumes B, are of equal size,
and if there are no other data relevant to the estimation of K. Otherwise, it
may be more appropriate to use a weighted average. Cruz Orive (1980) showed
that ratio estimation methods (Cochran (1977)) typically produce more accurate
estimates of stereological parameters such as Vv that can be expressed as ratios
of aggregate quantities. Recalling (8) we propose the ratio estimator for K(r),

. B ¥
Ralr) = ZELYC) (10
X2 Ny

where Yl(r) and Nv(,) denote the estimates obtained from sampling region B, for

l=1,...,m. Thus IA(quad is a ratio of averages, whereas K,,, is an average of
ratios. Alternatively using (8) we can recognise (10) as a weighted average of the
individual estimates:

5 myak
Ryslr) = EELTLE) (11

where a; = Ny?,).

The bias and standard deviation of the ratio estimator f(quad are known theoret-
ically up to an approximation (Cochran (1977), p. 117; Cruz Orive (1980)) and
can be estimated from the data:
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N 1
Var (Kquad(r)) ~ —K(r) {Cus + Cyy — 2C,,} (12)
and for the bias
N 1
E (Rquaa(r) — K(r)) » —{K(r)Cuz — Cuy} (13)

where C,,, C,,, Cy, are the entries in the relative covariance matrix of (¥ (), Nyz).
The bias is approximately proportional to 1/m, i.e. bias decreases with the num-
ber of sampling windows (Cochran (1977), p. 117). This is important, because it
allows us to estimate K (r) for values of r larger than the recommended maximum
distance D /4 discussed in paragraph 3.2.

The standard deviation of the ratio estimator is apprczximate]yA proportional to
1/4/m, as for the naive estimator. The choice between Kgye and Kyqq depends on

how well a scatter plot of the estimates (?(r), sz) fits a straight line through the
origin, as measured by standard least-squares regression. If the fit is good then
according to (12), Kguas will be more accurate (less biased and smaller variance)
than I?aw We would generally expect the ratio estimator to be better.

The typical stereological sampling experiment is a nested sampling design in
which several individuals (e.g. animals) are each sampled within several 3-
dimensional blocks (e.g. tissue blocks) which are in turn each sectioned several
times. Analysis-of-variance techniques can be used to quantify the variability at
each level of the experiment (Gundersen & @sterby, 1981). These procedures will
be adopted in the present experiment because we have 3 animals each providing
10 sampling regions or bricks for analysis.
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4 ANALYSIS

First we report on the estimation of Ny. Table 1 shows the individual estimates
Ny for each brick. The means for each animal are 23.6, 36.3, 34.8 (lacunae /108
cubic microns) for animals Z4, Z5, Z9 respectively, with standard error 1.7. The
overall mean is 31.6 with standard error 4.1.

Animal Ny estimates
74 35.7 22.6 247 247 20.3 165 20.8 28.5 22.2 19.8
75 30.2 41.2 37.0 38.4 37.0 27.2 494 37.0 30.4 35.0
79 37.0 32.3 29.2 28.2 382 358 40.1 32.9 334 41.2

Table 1: Estimates of Ny (number per 108 cubic microns)

An analysis of variance is in Table 2. This is a standard one-way analysis based
on a variance components model, i.e. assuming constant inter-brick variance
across animals. There is some suggestion that animal Z9 has a lower variation
between bricks, but we set this aside in the present preliminary report. The
variation in numerical density Ny between animals is estimated at about 22%
CV (i.e. standard deviation as a fraction of the grand mean). The variation in
estimates of Ny between bricks is put at 17% CV.

The effect of taking 10 bricks per animal is that the estimate of Ny for each animal
has about 5% CE (coefficient of error, i.e. standard error of the estimate divided
by the mean), while the effect of taking 3 animals with 10 bricks per animal is
that the overall estimate of average Ny has about 13% CE. For the purposes of
estimating average Ny it would have been more efficient to take fewer bricks and
more animals. This reinforces the claims in Gundersen & Dsterby (1981) that
biological variation tends to overshadow other sources of variation in stereological
nested sampling.

Next we have calculated individual estimates of K (r) for each brick in each an-
imal, according to equation (4). The estimates for each brick in animal Z4 are
presented in Figure 1 and compared with the theoretical Poisson K-function.
There is a remarkable degree of coherence between the individual graphs, con-
sidering that each brick contained only 20 to 40 points.

SOURCE df SS MS| SD cv
animals 2 967.1 483.5 | 6.95 22%
bricks 27 790.1 29.3 [5.41 17%

total 29 1757.2

Table 2: Analysis of variance for Table 1
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Figure 1: individual K plots for animal Z4
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Figure 1. Estimates of K for each brick in animal Z4 (solid lines)
compared with the theoretical Poisson curve (dotted)
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Figure 2. Scatter plot of estimates of Y against estimates of NV
(numbers 4, 5, 9 refer to animals 24, 5, 79)

Fig 2a. Scatter plot (r = 50 micron)
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Fig 2b. Scatter plot (r = 30 micron)
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Fig 3(b) Animal Z5

Fig 3(a) Animal Z4
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Figure 3. Estimates of K obtained by ratio regression (solid lines)
with pointwise confidence limits (dashed) and Poisson curve (dotted)
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To check the validity of the ratio estimator (10), we plotted the estimates of
Y (r) against the corresponding (Ny)? for each brick, with r fixed. The plots are
Figures 2 (a) and (b) for r = 50 and r = 30 microns respectively, with labels 4,
5, 9 corresponding to the animals Z4, Z5, Z9. The regression model holds very
well.

Finally in Figure 3 we exhibit ratio estimates unad(r) for the K function of each
animal, and a pooled IA(qu,,d(r) estimate. The confidence limits for each fixed
r form the 95% confidence interval based on the t-distribution and using the
estimate of standard deviation derived from ratio estimation, equation (12). Thus
the confidence limits are strictly only to be applied for a fixed r. Nevertheless,
they can be taken as a confidence band (simultaneously over all r) with somewhat
lower significance level.

The deviation from the Poisson K is clearly identified. The estimates show
a pronounced dip in the X function in the range 15-35 microns, suggesting a
regular or inhibitory pattern of points.

The differences between the estimated K functions for the three animals are
surprisingly small. This may suggest that, while cell density Ny is subject to
biological variability, spatial interactions between osteocytes in developing bone
are invariant and therefore probably under strict genetical control. This in turn
makes us wonder how significant a quantity Ny is in biological research. It is
possible that cellular spatial relationships will prove to be more sensitive indices
of structure and function,
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