ACTA STEREOL 1987; 6/SUPPL II: 141–145 ISS COMMEMORATIVE-MEMORIAL VOLUME ORIGINAL SCIENTIFIC PAPER

ON THE SUPERPOSITION OF RANDOM MOSAICS

Luis A. Santaló

Departamento de Matemáticas, Facultad de Ciencias Exactas, Ciudad Universitaria (Nuñez), Buenos Aires, Argentina.

ABSTRACT

We compute the mean values of the area $a_{12...m}$, the perimeter $h_{12...m}$, the number of arcs $w_{12...m}$ and the number of vertices $v_{12...m}$ of a typical polygon of the superposition of *m* independent random mosaics. Some particular cases are considered. For definitions and basic formulas see Cowan (1980) and Santaló (1984).

SUPERPOSITION OF RANDOM MOSAICS

Cowan (1980) defines as characteristics of a random mosaic M, the mean values of the area a, the perimeter h, the number of arcs w and the number of vertices v of a "typical polygon" of M (suitably defined).

In Santaló (1984) we computed the characteristics of the random mosaic obtained by homogeneous random superposition of two independent random mosaics M_i of characteristics a_i , h_i , w_i , v_i (i = 1, 2). The result was

$$a_{12} = \frac{2\pi a_1 a_2}{2\pi (a_1 + a_2) + h_1 h_2}, \quad h_{12} = \frac{2\pi (a_1 h_2 + a_2 h_1)}{2\pi (a_1 + a_2) + h_1 h_2}$$

$$w_{12} = \frac{2\pi (w_1 a_2 + w_2 a_1) + 4h_1 h_2}{2\pi (a_1 + a_2) + h_1 h_2}$$

$$v_{12} = \frac{2\pi (v_1 a_2 + v_2 a_1) + 4h_1 h_2}{2\pi (a_1 + a_2) + h_1 h_2}.$$
(1)

If we superpose m independent random mosaics M_i (i = 1, 2, ..., m) of characteristics a_i , h_i , w_i , v_i (always assuming that the superposition is random homogeneous), we get the following result:

Theorem 1. The characteristics of the random mosaic obtained by superposition of

m independent random mosaics M_i , are the following:

$$a_{1...m} = \Delta^{-1} 2\pi a_1 \dots a_m$$

$$h_{1...m} = \Delta^{-1} 2\pi \{h_1 \mid a_2 \dots a_m\}$$

$$w_{1...m} = \Delta^{-1} (2\pi \{w_1 \mid a_2 \dots a_m\} + 4\{h_1h_2 \mid a_3 \dots a_m\})$$

$$v_{1...m} = \Delta^{-1} (2\pi \{v_1 \mid a_2 \dots a_m\} + 4\{h_1h_2 \mid a_3 \dots a_m\})$$
(2)

where

 $\Delta = 2\pi \{a_1 \dots a_{m-1}\} + \{h_1 h_2 \mid a_3 \dots a_m\}$

and { } indicates "symmetric functions", i.e.

$$\{h_1 \mid a_2 \dots a_m\} = h_1 a_2 \dots a_m + a_1 h_2 \dots a_m + \dots + a_1 \dots a_{m-1} h_m$$

$$\{h_1 h_2 \mid a_3 \dots a_m\} = h_1 h_2 a_3 \dots a_m + h_1 a_2 h_3 \dots a_m + \dots + a_1 \dots h_{m-1} h_m$$

$$\{a_1 \dots a_{m-1}\} = a_1 a_2 \dots a_{m-1} + a_1 \dots a_{m-2} a_m + \dots + a_2 a_3 \dots a_m$$

Proof. By induction. For m = 2 the formulas (2) hold, since they coincide with (1). Assuming that they hold for m mosaics M_i applying (1) to the pair of mosaics $M_1 \cup M_2 \cup \cdots \cup M_m$ and M_{m+1} , a straightforward computation verifies that (2) holds for m + 1 mosaics.

CASE OF MOSAICS WITH THE SAME CHARACTERISTICS

If the random mosaics have the same characteristics a, h, w, v the formulas (2) take the form

$$a_{m} = 4(m\Delta)^{-1}\pi a^{2}, \quad h_{m} = 4\Delta^{-1}\pi ah$$

$$w_{m} = 4\Delta^{-1}(\pi aw + (m-1)h^{2})$$

$$v_{m} = 4\Delta^{-1}(\pi av + (m-1)h^{2}),$$
(3)

where

 $\Delta = 4\pi a + (m-1)h^2 \, .$

Consequences. 1. If v = 4, we have $v_m = 4$ for any m. 2. For $m \to \infty$ we always have $v_m \to 4$.

Examples. 1. For Poisson random mosaics (Miles, 1970; Santaló, 1976, p.57) we have $a = 4/\pi\lambda^2$, $h = 4/\lambda$, w = v = 4 and (3) gives a_m , h_m , w_m , v_m . For instance, we have $w_m = v_m = 4$ for any m.

2. For random mosaics of Voronoi type of the same characteristics, we have (Miles, 1970; Santaló, 1976, p.57), $a = 1/\lambda$, $h = 4/\lambda^{1/2}$, w = v = 6 and we have

$$w_m = v_m = 6 - \frac{8(m-1)}{\pi + 4(m-1)}$$

142

ACTA STEREOL 1987; 6/SUPPL II

which is a decreasing function of m, from 6 to 4.

3. For random mosaics of Delaunay type, see Miles (1970), we have $a = 1/2\lambda$, $h = 32/9\pi\sqrt{\lambda}$, w = v = 3 and we get

$$w_m = v_m = 3 + \frac{32^2(m-1)}{32^2(m-1) + 162\pi^3}$$
.

4. Consider the regular mosaics of equilateral triangles (w = v = 3), squares (w = v = 4), regular hexagons (w = v = 6), or any affine transforms of them. By uniform random superposition of m such mosaics we get, respectively (according to (3)),

$$w_m = v_m \text{ (triangles)} = 4 - \frac{4\pi a}{4\pi a + (m-1)h^2}$$

$$w_m = v_m \text{ (parallelograms)} = 4$$

$$w_m = v_m \text{ (hexagons)} = 4 + \frac{8\pi a}{4\pi a + (m-1)h^2},$$

i.e. the mean number of vertices (equal to the mean number of sides) of a typical polygon is less than 4 for the superposition of triangular mosaics, equal to 4 for the superposition of mosaics of parallelograms and greater than 4 for the superposition of mosaics of hexagons. This gives a criterion for recognising if a given random mosaic is the result of superposition of mosaics of triangles, parallelograms or hexagons. Of course, the condition of w or v being less, equal or greater than 4 is only a necessary condition, not sufficient.

MOSAICS OF RECTANGLES

Formulas (1) apply to the mosaics obtained by random superposition of m non random mosaics (tessellations, i.e. arrangements of congruent polygons fitting together so as to cover the whole plane without overlapping). Then a_i , h_i , w_i , v_i are the area, the perimeter, the number of sides and the number of vertices of a polygon of the mosaic. The mosaics can be assumed moving in the plane without deformation with the kinematic density of integral geometry (Santaló, 1976).

Consider, for instance, the case of m mosaics M_i of congruent rectangles of sides δ_i , λ_i (i = 1, 2, ..., m) (formed by lines parallel to the x-axis at distance δ_i apart and the lattice of orthogonal parallel lines at distance λ_i apart). Then we have

$$a_i = \delta_i \lambda_i$$
; $h_i = 2(\delta_i + \lambda_i)$, $w_i = v_i = 4$

and for the mosaic obtained by random superposition of them we get

$$a_{12...m} \text{ (rectangles)} = \pi \Delta^{-1} \delta_1 \dots \delta_m \lambda_1 \dots \lambda_m$$

$$h_{12...m} \text{ (rectangles)} = 2\pi \Delta^{-1} \{ (\delta_1 + \lambda_1) \delta_2 \lambda_2 \dots \delta_m \lambda_m \}$$

$$w_{12...m} = v_{12...m} \text{ (rectangles)} = 4 ,$$
(4)

where

$$\Delta (\text{rectangles}) = \pi \{ \delta_1 \lambda_1 \dots \delta_{m-1} \lambda_{m-1} \} 2 \{ (\delta_1 + \lambda_1) (\delta_2 + \lambda_2) \delta_3 \lambda_3 \dots \delta_m \lambda_m \} .$$

For congruent mosaics of rectangles of sides $\delta_i = \delta$, $\lambda_i = \lambda$ we have

$$a_{1...m} \text{ (congruent rectangles)} = \frac{\pi \delta^2 \lambda^2}{\pi m \delta \lambda + m(m-1)(\delta + \lambda)^2}$$
$$h_{1...m} \text{ (congruent rectanges)} = \frac{2\pi (\delta + \lambda)\delta \lambda}{\pi \delta \lambda + (m-1)(\delta + \lambda)^2}$$
$$w_{1...m} = v_{1...m} \text{ (congruent rectangles)} = 4.$$

For mosaics of squares of side δ we have $\lambda = \delta$ and thus

$$a_{1\dots m} (\text{squares}) = \frac{\pi \delta^2}{\pi m + 4m(m-1)}$$
$$h_{1\dots m} (\text{squares}) = \frac{4\pi \delta}{\pi + 4(m-1)}$$
$$w_{1\dots m} = v_{1\dots m} (\text{squares}) = 4.$$

If $\lambda_1, \lambda_2, \ldots, \lambda_m \to \infty$ the mosaics of rectangles tend to lattices of parallel lines at distances $\delta_1, \delta_2, \ldots, \delta_m$ apart. Then, from (4) we deduce the following.

Theorem 2. If m lattices of parallel lines at distances $\delta_1, \delta_2, \ldots, \delta_m$ apart are superposed independently at random, the resulting random mosaic has the following characteristics

$$a_{1...m} \text{ (parallel lines)} = \pi \Delta^{-1} \delta_1 \dots \delta_m$$
$$h_{1...m} \text{ (parallel lines)} = 2\pi \Delta^{-1} \{\delta_2 \dots \delta_m\}$$
$$w_{1...m} = v_{1...m} \text{ (parallel lines)} = 4 ,$$

where

$$\Delta = 2\{\delta_1 \ \delta_2 \dots \delta_m\} \ .$$

If the parallel lines are the same distance apart for all lattices, we have $\delta_1 = \delta_2 = \cdots = \delta_m = \delta$ and so

$$\begin{split} a_{1\dots m} & (\text{equidistant parallel lines}) = \frac{\pi \delta^2}{m(m-1)} \\ h_{1\dots m} & (\text{equidistant parallel lines}) = \frac{2\pi \delta}{m-1} \\ w_{1\dots m} = v_{1\dots m} & (\text{equidistant parallel lines}) = 4 \;. \end{split}$$

ACTA STEREOL 1987; 6/SUPPL II REFERENCES

Cowan R. Properties of ergodic random mosaic processes. Math Nachr 1980; 97: 89–102.

- Miles RE. On the homogeneous planar Poisson point process. Math Biosc 1970; 6: 85-127.
- Santaló LA. Integral geometry and geometric probability. Encyclop Math and Appl. Reading: Addison-Wesley, 1976.

Santaló LA. Mixed random mosaics. Math Nachr 1984; 117: 129–133.