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ABSTRACT
FProblems of mineral liberation are illustrated through
models for two-phase spherical particles, sampled by random

line and plane sections.
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INTRODUCTION

The reason for mineral technology is the processing of

ores to separate mixtures of intergrown minerals. Rocks are
ground down to give up their mineral grains. This grinding is
expensive, so it is essential to have rules which show the
earliest instant at which the grinding can cease. As well as
the waste of energy and the cost of sharpening the cutting
edges, very small particles can be difficult to process. The
particles produced would ideally each contain just a single
mineral phase, These are the liberated particles. Those that
stili contain more than one mineral phase are called
composite.

The external appearance of particles can seem to show
them to be liberated when in fact they contain internal phase

boundaries. Nevertheless, as composite particles are broken,
liberated pieces are created, and those still composite tend
to have less intergrowth of phases and show a greater
concentration on one of them. Eventually most particles can
be expected to be liberated. However, as already remarked

upon, we often cannot afford to wait so long, and a "dust" of
liberated particles can be unsuitable for further processing.

At each stage of the grinding we would like an estimate
of the proportions of liberated particles of each phase for
each size of particle, and to identify the distribution of
the composition and the degree of intermingling of phases for
the composite particles of each size.



186 COLEMAN R: MINERAL LIBERATION

In a mixture of particles of different sizes we are not
comparing like with like if we say that half the particles
are l|liberated, when the half that are liberated are all very
small and the half that are still composite are all large.
Davy(1984) constructs indices of liberation which take into
account the differing sizes of the particles. From a
mathematical point of view we can take the particles all to
be of the same size, since in principle we could wuse a
sequence ot sieves to sort the particles. The particles of a
particular size are those which pass through one sieve but
not the next in the sequence, if the holes get successively
smaller.

Similarly, in principle, we need consider particles
having only two mineral phases, o and B say, where o can
represent the phase of interest and B is a conglomerate of
all the other phases. We can carry out separate analyses
taking each phase in turn to be the 0 phase.

Let us consider particles some of which may have s core
of one material set in a shell of a second material. These
appear to be liberated. This can lead to overestimation of
the proportion of liberated particles. Examination of the
internal structure by line probe sections or plane sections
can reduce this systematic error but will not remove it
entirely, since if the section misses the core it will tail
to expose the internal phase boundary.

In this paper our concern 1is with the use of
stereological information given by random sections through a
random sample of particles. For only a few geometrically

structured particles has the distribution of the intercepts
been derived theoretically, and then only tor sections taken
in certain unitormly random ways (Coleman,lS5378,1951: Jones et
al,1978; Jones & Horton, 1979). That there is more than one
way of taking a line or plane section uniformly at random,
and that these give rise to different intercept
distributions, was noted in the case ot a random chord of a
circle as long ago as 1888 by Bertrand(18&88). In
Colemant1887) more than 10O difterent cases ror line and
plane sections of a sphere are listed. The various randomness
mechanisms extend to the taking of line and plane sections

through irregularly shaped particles (see for example
Coleman, 1984, The regular geometric shapes for which the
intercept distribution «can be found theoretically are not
generally those or particles obtained trom crushing, and a
comparison with the intercepts tor synthetic populations ot
irregulacly shaped particles is not close (Moore &

Jones, 1980, 1981).

As a general observation there can be no wholly adequate
solution to the ©problem of mineral liberation without
modelling assumptions for the structure of the particles.
Attempts have been made to use general theorems of integral
geometry such as tormulae for the mean intercept length of a
random line section. But even this requires us to assume that
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the particles are convex in shape, and have at most one
interface between the two phases, and that this is a planar
interface so that the two phases are themselves convex
grains. See for example Bodziony & Kraj(1985) for a review of
this.

A PROBABILITY MODEL FOR MINERAL LIBERATION

At its simplest the problem can be presented as follows.
Let

=V (o
Y \Y

be the volumetric grade of phase o 1in a particle, that is to

say, the fraction of the volume that is phase a . We suppose
that the population or particles has a volumetric grade
distribution whereby, for a particle taken at random, it is
liberated and phase o (so Y = 1) with probability Pa, it is
liberated and phase B (so Y = 0) with probability Pgy oOr it
is composite with probability Pc = l—pA—pB. Those particles
in the population that are composite will have a distribution

of volumetric grades:
Pctc)de = PC Y is in the narrow range tc,c+dc)) (0<ce1y,

where P(A) denotes the probability of the event A. The
density p,(c) can be treated as a generalized probability
density which allows a discrete probability distribution

PC y = Y w) (i = 1,2,...,k),

PCy =0 =p, P« Yy =1 =p

B A

to be represented as a convex combination of delta functions.
In the continuous case we have a mixed distribution with a
density over the range O to 1 and atoms of probability at 0
and at 1.

The ©problem is to estimate P s P and the density
Pcotc) from the intercept data. For Pine sections through each
of a random sample ot particles this intercept data is
generally the linear grade G of the intercept, the fraction
of its length that is in phase ¢ ,

For plane sections it is the area grade, the fraction of its
area that is in phase a ,

The statistics at our disposal tor the estimation are
the proportions of liberated intercepts having G =1 and
= 0 respectively, and the values of the intercept grades
of the composite intercepts.

[
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We illustrate the above with a model in which all the
particles are spheres, and the composite particles are
concentric spheres. In a second paper the technically more

difficult case in which the phase interface in the spherical
particles is a plane is treated.

CONCENTRIC SPHERE MODELS

Example 1

The particles are all spheres of radius one. Some are
entirely of phase B and some have a central core of phase g
surrounded by a shell of phase B.

For a line section that penetrates the core of a
composite particle we can measure the total intercept length
in the particle, Yo and the intercept length in the core,
u, . Simple triangle geometry gives the core radius r

= - (u2 - u2?)/a4)
r /(1 u0 u1)/4J

Similarly for a plane section that passes through the core we

measure the diameter of the disc section of the particle, u,,
and of the core section, u,. Then the core radius r takes tRe
same form as for the line section. In each case we know the
core radius exactly. All that remains is to identify the core

radii of those particles which are composite but for which
the section misses the core.

Let us suppose that we have a sample of n particles, and
that of the n random intercepts, n, pass through a core, and
for these n, we obtain values for the core radii. These core
radii are sorted into k size classes D IR centred on
the wvalues CQeeea,T respectively. [f there are m. in the
ith size «class then there will be another unknown number
n. - m, of particles with core radii in this size class but
for which the intercepts missed the core. Let

"C" be the event "the core is hit", and let

"R." be the event "the core radius is in the size class
centred on rc.". Then, with some approximation because ot the
grouping intd classes and the assumption that each core
radius in the classhas the precise value r. , the probability
that the core is hit given that the core Ttadius is in the
size class Dj

p. = P(C|R.) = m.,/n,

J J J J
The value of P5 is known theoretically for a uniformly
random section of a sphere, m 5 is observed, and so ny is

determined approximately. That is to say,

n., = mj/pj
is our estimate of the total number out of the sample of n
particles that have their core radii in the size c¢class
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centred on the value r,., The " ~ n denotes that the value n.
is an estimate of N We can then estimate the total number
of particles in the sample that have a core by

A _ A
n, = an
We can introduce a sateguard to prevent its value exceeding
that of n, i.e.

; A

ﬁc: Zﬁj (Zﬁj\«n); r"|\C= n (Enjan).
The number which are liberated, N = n - n_ is estimated by
n - ng . The ratios {n./n ) estimate the distribution of
the core radii for the composite particles. If there are many

repeated values of the core radii we can take this to be
evidence that the «core radii take their wvalues from a

discrete distribution. We can then avoid grouping into size
classes and use the exact values r.. If the data appear to
come from a continuous distribution we may be able to apply
some smoothing to the estimates. In both cases it may be
possible to fit a parametric distribution. Corrections for
grouping, appropriate choice of size classes and the
statistical estimation of standard errors can all ,be made

before presenting the results.

The above is based on the use of the full information
contained in the intercept data.

Table 1. Distribution of the distance X to random chords and
random plane sections of spheres of unit radius. In this table
v = /(1L - x*). For each uniform randomness, we give alternative
notations in brackets, and write F(x) = P(X < x).
Line sections Plane sections
Randomness F(x) Randomness F(x)
S vy 1 - v [ CIUR, pu» X
I CIUR, W), B x2 Wo(vo,B 3(x - 1x3)
2 3
W v 1 -3 B 15¢x -2x3+ 1x5)
8 3 5
o, 1 - vi4 % 35(x - x3+ gxs- £x7)
16 5 7
T (A) 1 - v6 T () 316 (x-4x3 +6x% -axT+1x9)
128 3 5 7 9

1 x3 AL x3
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Example 2

When we have information on just the intercept grades we
need further probability arguments. This situation can arise
when the particles which are concentric spheres are of
various sizes. The core radius is no longer the relevant
parameter, since it is not in correspondence with the
volumetric grade Yy . The intercept grades take values u,/ug
(= LL ftor a line section, = AA for a plane section).

We sort the n_, composite intercept grades that are our

observations into k size classes DI.D «ee2.D, centred on
the values DR L DI W This is for ine sections. For
plane sections the intercept grades are sorted into the size
classes D2 e centred on r%,....rﬁ. It we take the

square root of the intercept grades, these can be sorted into
the same size classes as for the line sections.

Let "G;" be the event "the intercept grade is in the
class Di or Dy o Then we can obtain theoretical
expressions for the probability ot G; when the core radius
is in the size class Dj. i.e. for

q. . = PG, R.).
ij i j
Without any loss of generality let us scale each particle’'s
size so that its outer radius is L and 1ts 1nner radius is
ro=y [CIN 1 £ the size class D, runs from r = a to r = b,
the event Gi nccurs it the distance of the intercept from
the particle centre lies in the range
; n 1
r2 - p2| 3 r2 = 82 2
5 = Xy . say, to 3 = Xy« Savy.
l - b 1 - a
This follows from triangle geometry. Let this distance from
the centre be the random variable X. Examples of the
distribution of X are given in Table 1 adapted rrom

Coleman(1987). We note that the probabilities needed tor the
full information case of Example 1 are also given by this
table:

I

I
T
-

p.

P(CIR.) = P(X « r.)
j lJ A

J

If the boundaries of the size class Di are a and b, then

g = FlGile) = Plx,_ & X ¢ x_ ) = Fux_» - Fux

ij b a a b

where r = rj in the formulae for X q and Xy

We again approximate by assuming that ir a core radius

has its wvalue in D. then its value 1s exactly £4 the
ceEntee ofr the class] With this approximation we have the
probability relationship tknown as the law ot total

probability)
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PGy = IP(G,|ROP(R,).
i 3 i h| j
Suppose that we observe wj of the n intercepts to have
grades in the class Dj or D!, then we can estimate P(Gi)
by wi/n. The probabilities PGy Rj) = dij are known
theoretically from the above, so we have a set of
simultaneous equations for P(R:), which we can write as

nj/n. Our equations for estimating [nj} are therefore
A

w. = X qgq..n.

; qu 3j

J

This can be written in matrix form

.

le

n
3 =]
13>

A
n = g—]w :

Example 3

The methods of Example 2 can be applied to a population of
spherical particles of four types in a mixture of two groups:
the first is liberated particles of phase B and those with a
core of a surrounded by B as in Example 2; the second group
is the reverse case, liberated particles of phase o and those
with a core of B surrounded by o + The intercepts will clearly
show to which group a particle belongs, so the results for each
group can be analysed separately.

Example 4

The results can be extended to the case ot particles of
the following sorts: liberated spheres of phase o cores of
phase 81 surrounded by o , cores of B 2 surrounded by ¢ , of
3 surrounded by ¢ ., and so on. From the composite intercepts of
each type we estimate the distributions of core sizes, and the
numbers for which the intercept misses the core. By subtraction
trom the observed total of intercepts that miss the cores,
we estimate the number of particles that are liberated of phase
o . It is easy to see how, by Examples 3 and 4, even more
elaborate models involving concentric sphere particles can be
analysed. ’
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