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ABSTRACT

We .draw the attention of stereologists to some recent developments in the theory of random spatial
patterns (Arak and Surgailis, 1989; Baddeley and Mgller, 1989; Clifford, 1989; Ripley, 1989) which may
be useful in the study of spatial interactions in a multiphase structure. This paper is intended as a
non-mathematical introduction to the field. We describe the basic concept of a Markov chain, then
briefly survey the new developments.
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1 INTRODUCTION

When studying a material containing several phases, or a biological tissue consisting of different com-
partments, it is natural to ask whether the arrangement of phases is ‘completely random’, or whether
some phases tend to be associated.

As a ‘volumetric’ measure of phase association one can use the covariance function (Serra, 1982). The
cross-covariance C{',’ﬂ (r) of phases a, 3 at displacement  is defined as the probability that a randomly-
chosen point z in three dimensions will have phase label a while simultaneously the point = + r will
have phase label 8. If the structure is isotropic, this can be estimated stereologically, from the same
cross-covariance on a random section:

Cyh(r) = cf () (1)
see Greco et al (1979) for an application.
Kroustrup et al (1988) develop an analysis of surface affinities which is appropriate when the phases
of interest are in contact with each other. The total area of interface surface between two specified phases
a,f is estimated using standard stereological methods:

Sv(8:a) = 2Ba(8: a) @

These can then be studied for evidence of non-random association.

Another approach, potentially more powerful than the preceding ones, might be to take the whole
record of phase labels along a linear transect and analyse this record as a 1-dimensional random process.
Transect methods are especially popular in botany, forestry and ecology: see, e.g. Matern(1987), Pielou
(1964, 1965), Ripley (1977). We discuss this approach further in §4.

2 MARKOV CONCEPT

This section explains the basic concept of a Markov chain. We illustrate it with a non-stereological
example: the problem of analysing a passage of English text, such as

once upon a time there was a woodcutter who lived ...

As a first step we could count the frequency of each letter, finding that (say) 12% of the letters are e,
6% are t and so on. A useful way to visualise these frequencies is to simulate a stream of random letters
drawn from the given probability distribution. This can be done with the help of a computer random
number generator:
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r,e.gtaa tt eo set s F ue ioNb ostheealmitoldtyee e
hsyt h r o. hsh,w,o0 N.nu. "ni euMuieoelhemed coo a,
n, fo oen o ooa isivrhno f so yb ys sbeg nefols

As a description of the original text, this simulation is equivalent to the table of letter frequencies. The
random text reveals the limitations of such an analysis. Letter frequencies in text could be compared
to volume fractions Vi of phases in a multiphase material in stereology; they contain information -about
proportions but no information about ‘pattern’. See the recent comments of Weibel (1989).

For more detailed information, we need to study the dependence between successive characters. The
number of times a letter n is followed by a letter c, divided by the total number of appearances of the
letter n, is an estimate of the probability of a “transition” from n to c. Once again, this frequency
information can be represented by simulating a stream of random text, this time using the transition
probabilities to generate the random sequence:

thoncl Hedba Che wany ss be iler man y cll o he.
ft graingad Shee de t br con haved povedo ourwo
" mindy.." he buns £ all t of nou. Min an in

This is an example of a Markov chain (see e.g.. Feller, 1965, chap. XV). A Markov chain is more
formally defined as a sequence of random “states”

Xl,Xz,...

with the so-called ‘short memory property’ that the conditional distribution of X, given all the previous
states X1, X2,...Xn_1 depends only on the immediately preceding state X,_1:

P(XnalX1, X2, ... Xn-1) = P(Xa|Xn_1) @)

If the previous state was Xn—1 = a and the new state is X, = B we have observed a transition from
a to B. “Short memory” means that the next transition does not depend on the previous history of
transitions, only on the current state. )

The structure of a Markov chain is completely described by its transition probabilities

Prap = P(Xn = B|Xn-1 =0) (4)

and we usually assume the chain is homogeneous in time, meaning that pn a8 = Pa,s does not depend on
n. These probabilities can then be estimated by counting the frequencies of transitions in a long sequence

of observations.
Note that the definition of ‘state’ is rather abstract, and we can define a ‘state’ to be anything

appropriate to the problem. Returning to the example of English text, instead of regarding a single
character as a state, we could take characters a pair at a time, so that the text

Once upon a time

is interpreted as On, nc, ce, ... The transition probabilities would then describe the frequency with
which a pair of characters on is followed by a character c, say. Following is a simulation from this Markov
chain:

I ke wassit re barounks brolurn then,
all (whilike colustat I sherey ’win
witerk, cally dere; eaveas a Punk up
wer mark. I the fouggian’t do thirs.

This can be extended to three-character states:

On he fruit books a contic wer rings a bettle homes
suit get offed throughest as told bear fore as of

hiking wing the of when, madly he is in the accome,
who it borate rite low whoever acces I doorwegiams.

Alternatively we can define a state to consist of an entire word, and count the frequency with which a
given word is followed by another given word. A simulation from the corresponding Markov chain follows:
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to return a double room for breath, out
a mascara pen and announced, in the door
opened and, gasping for the waitress came
by accident, but he’s well aware of you

And for a two-word-state Markov chain:

book, sees plenty of parking directly in front of
the pall bearers and plunged out of a lisp, which
made her more beautiful to him. A few days later,

And for a three-word-state Markov chain:

the lobby. After a minute he comes back,
with the girl on his arm. "Fancy meeting
my wife here," he says to the pig

The main point of this section is that a complex process such as English text can be represented or
described, tolerably well, by a simple random model. Increasingly faithful descriptions can be made by
redefining the notion of ‘state’ or equivalently by adding higher levels of dependence.

3 SPATIAL MARKOV PROCESSES

A Markov chain is usually regarded as an ordered sequence progressing in “time” (see, e.g. Serra, 1982,
p. 551), but time can also be viewed as one-dimensional “space”. The probability of an entire sequence
of states

aafaBafBpp...
can be computed by multiplying the conditional probabilities:

¢ HPX-.X-+x = C-Pa,aPa,fPB,aPa,8P8,aPa,fPB,APE,M - - - (5)
n
a product of terms involving only successive pairs of states. We can therefore re-formulate this as a
spatial process:

e “space” consists of a line of discrete “sites” numbered 1,2,3,....
e at each site n, there is a “state” X,.

o the conditional distribution of the state at site n given the states at all other sites, depends only
on the states at the two immediate neighbour sites n — 1 and n + 1.

P(X.|Xiall i # n) = P(Xa|Xn-1,Xn+1) (6)
It can be verified that this is equivalent to the original definition. The concept of ‘transition’ between
successive states in time has been replaced by the concept of spatial ‘interaction’ between adjacent sites.
In this form, Markov chains can be generalised to random processes with an arbitrary collection of
“sites” with arbitrary connections, i.e. an arbitrary graph. For example, the points of a two-dimensional
rectangular or hexagonal grid could be taken as the “sites” for a spatial Markov process.
Say that two sites m,n in a finite graph are neighbours if they are joined by an edge in the graph, and
denote this by m ~ n. A Markov process on a graph G is a system of random state values {X, : n € G}
such that

The conditional distribution of X, given all the other values X; depends only on the sites
that are neighbours of n:

P(XalXi,all i #1) = P(Xp|Xm : m ~n) 7

An important example is the Ising process developed as a model for quantum magnetisation. Sites form
a regular (usually square) grid in two dimensions. Each site n represents an atom. Atoms are magnetised
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either “up” (+1) or “down” (-1). The magnetisation of each atom is random but affected by its immediate
neighbours.

The conditional probabilities P(X|Xm : m ~ n) describe the probability distribution of the state of
an atom given the states of the atoms immediately surrounding it. For the Ising process these probabilities

are
eTN(+)

P(Xn=+l|Xm:m~n)=m

(8)
where 7 is an interaction parameter and N(+) = number of neighbours with value +1, N (=) = number
of neighbours with value —1. Depending on the value of v, the conditional distribution of X, can be
strongly or weakly influenced by the neighbouring values: ¥ = 0 produces no interaction, so that all
states are stochastically independent; 7 = 0o produces a deterministic ‘majority vote’ in which X, must
agree with the majority of its neighbours.

The probability of the entire pattern of +1's and —1's in an Ising process is

P(X.:n €G)=cexp(y Y XaXm) (9)

A~

i.e. a product of interaction terms associated with each pair of neighbours.

An interesting alternative definition of the spatial Markov process is as follows. Consider any subset
A of sites in the graph. Define the boundary of A to be the set 04 of sites b such that b ~ a for some
a € A, but b ¢ A. Then a random process {X, : n € G} on the graph G is said to have the spatial
Markov property if the conditional distribution of the states inside A given the states outside A, depends
only on the states in the boundary region:

P(Xn:n€AlXi:ig A)=P(Xn:n € A|Xnm :m € 04) (10)

The celebrated Hammersley-Clifford theorem states that any spatial Markov process on a discrete
graph can be expressed in terms of interactions between pairs of neighbours (and possibly triples of
neighbours, quadruples, ...) For further information see Kindermann & Snell (1980).

4 MARKOV PROCESSES IN CONTINUOUS SPACE

Pielou (1964, 1965) studied two-dimensional patterns of vegetation using transect methods, in which the
vegetation type (phase label) is recorded along a linear transect of the pattern. She proposed that the
transect data be analysed as if they came from a (one-dimensional) Markov process.

This was criticised by Bartlett (1964) on the grounds that there was no known 2-dimensional random
process with the property that any transect is Markov. Switzer (1965) then constructed such a process,
as follows. Generate random lines in the two-dimensional plane (according to a Poisson process). The
lines divide the plane into polygons. Fill the polygons with random colours a, 3 independently of each
other. It is easily seen that line transects of this process are one-dimensional Markov processes.

Recently, Switzer’s construction has been generalised to a more flexible class of random mosaics by
Arak and Surgailis (1989) and Clifford and Middleton (Clifford, 1989) A mosaic is a function on the
continuous plane that takes a finite number of values «,8,... and has discontinuities only at linear
boundaries. A Markov random mosaic is a random mosaic with the spatial Markov property that

For any domain D in the plane, the mosaic inside D is conditionally independent of the mosaic
outside D, if we are given the phase state at all points of the boundary of D and also the
angles of the discontinuity lines where they hit D.

Random mosaics might be used as models of minerals or other materials in which all phase interfaces
are planar. At present it is not well understood how to perform statistical inference for Markov random
mosaics, or even how to simulate them efficiently.

Markov random fields (i.e. “grey-level-valued” functions on continuous n-dimensional space) have
been extensively studied by the Russian school of probability theory (see e.g. Rozanov, 1982). ‘Semi-
Markov’ random spatial processes were introduced by Matheron, Jeulin and Serra (Serra, 1982).
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5 MARKOV POINT PROCESSES

Another approach to stochastic modelling of two- or three-dimensional spatial patterns, appropriate for
describing the locations of cells, cell bodies etc., is to idealise the locations of the objects as points
(possibly with additional information attached to each point). The outcome of a point process is thus
a pattern of random points {X),..., X5} in the window of observation. Techniques for analysing point
patterns are presented e.g. by Ripley (1977) and Diggle (1983, 1986).

Markov point processes were defined by Ripley and Kelly (1977) briefly as follows. Say that two
random points X;, X; are neighbours if the distance between them is less than r (“interaction distance”).
For any domain D in the plane, define the r-boundary of D to be the region outside D but less than r
units away from D. Then a Markov point process is a random pattern of points with the property that
for any domain D in the plane, the pattern of points inside D is conditionally independent of the pattern
outside D, if we are given the positions of all points in the r-boundary of D.

Ripley and Kelly proved an analogue of the Hammersley-Clifford theorem (see section 3) which char-
acterises all such processes in terms of an “interaction” between neighbouring points.

Markov point processes as defined above have the drawback that interactions between points must
occur over a fixed range, and will occur between all points within that range. This has recently been
overcome by Baddeley and Mgller (1989), who construct random point processes in which the nature of
interactions is allowed to depend ‘dynamically’ on the geometry of the pattern. For example, we may
have interactions that only occur between points that are neighbours in the Voronoi tessellation generated
by the pattern. This opens the way to constructing random point patterns with interactions that depend
on spatial configuration and not just inter-point distances.

In place of “points” we may consider other geometrical objects such as circles, line segments, convex
sets etc. using the standard technique of ‘marking’ each point with additional information giving the
circle radius, line segment length and direction etc. The stochastic models obtained in this way — Markov
set processes — are a natural generalisation of the Boolean model.

6 CONCLUSION

It may soon be possible to analyse spatial dependence between rock phases, biclogical cell types, etc.
using an explicit stochastic spatial model. Advantages of explicit modelling are: the possibility of more
detailed information; the ability to use estimates of model parameters as summaries of data; and the
availability of statistical inference, such as tests of ‘significance’.

Further theoretical work remains to be done in order to decide how to estimate the parameters of
these stochastic models from stereological data, and in particular, about the relationship between a three
dimensional Markov spatial process and its plane sections.
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