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ABSTRACT

Polar plots formed by circles or spheres appear in different contexts, such
as in the stereology of oriented structures and in simple calculations of the
surface energy of crystals. They represent functions, f(n), of the orientation, n, of
a particular type, when { is proportional to the sum of the normal projections onto
n of a set of given vectors, {v}. New graphical methods of analysis of these f-polar
plots are developed with which the {v) set can be determined. The methods are
based on the concept of principal vectors which can be determined graphically from
the f-plot and from which, by another graphical method, the v-vectors are obtained
as the edges of a convex polygon (2D) or polyhedron (3D). The method can also be
applied to continuous distributions of v-vectors.

Three-dimensional f-plots are usually displayed in planar sections. The
information on the v-vectors that can be derived from these sections is discussed.
Cusps in f-plots are analysed and it is shown how their sharpness can be related to
the principel vectors.

KEY WORDS: oriented distributions, rose of  directions, polar plots, cusps,
polyhedra. :

INTRODUCTION

There are various problems in stereology and in other disciplines in which a
scalar quantity f(n) is defined as a function of the orientation n in space, through
the relation : .

fin) =z v, . nl (1)
i

where the v, are a (finite) set of given vectors. f(n) is therefore the sum of the

normal projections of the v onto n.

Equations of this type occur in the field of stereology of oriented
distributions of surfaces or curves (e.g. Hilliard, 1962; Underwood, 1970). Table 1
summarizes the relevant problems. The orientation of surfaces is defined by the
unit normal, e, and the orientation of curves by the unit tangent, which we also
denote by e. We assume for the moment that the distributions are discrete, each
orientation, i, being defined by a wvector e;. The area of surfaces and the
length of curves of orientation i, per unit volume of a 3D distribution, are denoted
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by Sy, and LV.’ respectively; and the length of lines of orientation i, per unit
area ‘of a 2D’ distribution, is LA»' ‘
1

Table 1. Intersection of oriented structures

Oriented features Intersected by

3D Surfaces: normal e; ; SV_ Lines: direction n ; PL
1

3D Curves: direction e, ; LV- Planes: normal n ; P A
1

2D Curves: direction e, ; L A. Lines: normal n ; PL
i

An oriented distribution is intersected by parallel test planes of unit normal
n or by parallel test (straight) lines, with orientation defined by the unit normal n
in 2D problems or by a unit vector, n, parallel to their direction, in 3D problems,
as indicated in Table 1. In all cases listed , a distribution of intersection points on
the test planes or test lines results, with average densities P A (per unit area) and
P (per unit length), respectively.

Both PA and PL depend on n and, obviously, on the intersected distribution.
The relevant ‘equations were first derived by Hilliard (1962). For a discrete set of
orientations, e they can be written in the form

PL(n) = ? S\l1 ‘el . N ' (2)
PA(n) = ? LVI Iel 1} I 3
PL =T Ly o0 )

respectively for surfaces intersected by test lines (3D), curves intersected by test
planes (3D) and curves intersected by test lines (2D)*. 1t is apparent that egs. 2-4
are of the type of eq. (1), with v; vectors defined by Sy e, LV- e; and LA- e
respectively. 1 i i

Another example of a problem that leads to an equation of type (1) appears
in the calculation of the surface energy of a crystal with one atom per lattice
point, when the atoms interact by a pairwise central potential, e(r). The equation
for the (unrelaxed) surface energy, 7, for an orientation of the surface with unit
normal m, is given by the lattice sum (Herring, 1951; Correia and Fortes, 1985)

'Y(n)=-2%ize(£i)|2i. n| | ®)

where the Ei define the atomic positions relative to a reference atom, and v is the

volume per atom. For each £, there is a - g;, but only one should be taken in the

* The intersection of surfaces by test planes does not lead to an equation of type
(1): the scalar product is replaced by a vector product.
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sum of eq.(5). Defining v; - vectors by

vi =2 e) g ©®

and noting that e(r) is negative for all interactions in the crystal, we conclude that
(5) is also of the type of eq. (1).

Let us now consider a continuous distribution of vectors, defined by a
density function v(e), where e is a unit vector defining a direction in space and v
is parallel to e. In 2D, v(e) is the sum of vectors per unit angular interval of
orientations in the neighbourhood of e. In 3D, n(e) is the sum of vectors per unit
solid angle centred at e. The equations that replace eqg. (1) are

£f(m) = | v(e) . n |de, @)
f(n) = I [ v(e) . n|dQe (8)

where d8; and d{le, respectively, represent an elementary angle or solid angle in
the neighbourhood of e. For example, if e is defined by cylindrical angles 6, ¢,
then dQ, = sinf d6 d¢.

The function f(n) is frequently displayed in a polar plot, or f-plot, in which
the distance to the pole, 0, in each direction n, is proportional to f(n). The plot,
frequently termed the rose of directions (Saltikov, 1958), is a closed curve or
surface, respectively, in 2D and 3D. When the distribution of v-vectors is discrete
(eq.1), the polar plot is known (e.g. Underwood, 1970) to be formed by portions of
circles (2D) or spheres (3D). '

Experimentally it is possible, at least in principle, to obtain f(n) or the
corresponding plot. The central question that we address in this paper is the
following: how can one obtain the v-vectors (i.e. the individual vectors of a
discrete set or the density function v(e)) from the f-plot?

Graphical methods will be developed with which this problem can be solved.

To do this we introduce the concept of principal vectors which can be obtained.

from the f-plot and with which the v-vectors can be determined, either

analytically or graphically. The singularities (cusps) in the polar plot of f(n) will -

also be studied and. their sharpness will be related to the principal vectors.
Finally, the information on the v-vectors that .can be obtained from planar sections
of a 3D f-plot will be discussed.

Previous attempts at solving equations of type (1), (7) and (8) to obtain
the v-vectors were made by Hilliard (1962), using methods based on Fourier and
spherical harmonics expansions and also a second differences method. These are
relatively complicated analytical methods. A simple method to solve eg. (7) is
described by Serra (1982), in which the equation is first transformed into a second
order differential equation in v(e). Another approach to the solution of the
integral equations was recently developed by the present author (to be published),
which is based on the linearization of the equations that relate f(n) to the
v-vectors. This method is quite general, but in each case requires a separate
calculation of the coefficients in the linear relation. The graphical methods to be
developed are simple, exact and of general applicability. Being graphical methods
they give the results in a graphical form, which is usually easier to visualize.

PRINCIPAL VECTORS, DISCRETE DISTRIBUTIONS

Consider a finite set of vectors, v;, With no two parallel vectors. If a set of
vectors is given with two or more parallel vectors, a vector v; is constructed,
parallel to those vectors, the modulus of which is the sum of the moduli of the
parallel vectors. This set is termed a reduced set of vj -vectors. For example, the

99
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set of vectors (6) is not a reduced set. The direction of the vectors is irrelevant,
i.e., v; can be replaced by -v;.

For a given direction, n, in space, we define the principal vector (P-
-vector), P(n), associated with n, as the linear combination of the v;, with
coefficients =1, that has the largest normal projection on n:

P(n) = 2° (£ vy ; |P.n| largest (9)
1
Clearly
P(n) = -P (-n) (10)

meaning that for each P-vector, P, there is a P-vector, -P. Note also that the
P-vectors are not affected if v, is replaced by -v;. Equation (1) can be written as

f(n) = P(n) . n 11

If the P-vectors are placed at a common origin, we obtain the P-plot, When the
distribution of v-vectors is discrete, as we are presently assuming, there are
intervals or domains of n (i.e. regions in space) which have the same P. The vector
P that corresponds to a domain may not be within the domain (see example below,
Fig. 1c).

The domains are separated by planes (3D) or lines (2D) perpendicular to the
v.-vectors. The P-vectors of two domains adjacent at a plane (3D) or line
(2D) are termed adjacent P-vectors. Their difference is, from the definition (9),
a 2vi-vector.

There are two problems that we shall address in this section. The first is
the determination of the P-vectors of a given discrete set, v;. The second is the
reverse problem of determining the v-distribution f rom_the P-vectors.

The first problem can in general be solved by the following method, based
on the definition of the P-vectors: a combination of the v, with coefficients +1 is
a principal vector if there is a direction n (in the plane for 2D problems; in space
for 3D problems) for which P . n is larger than P’. n, where P’ is any other +1

combination of the vi-

There is a simple construction that can be used to find the P-vectors in 2D.
The v,-vectors are placed at a common origin, starting with an arbitrary vy the
direction of the other vectors is chosen such that their angles with v;, measured
anticlockwise, are smaller than 180° (Fig.la). The successive vectors are Vv;, V;
, Vs ... and their orientation is taken as positive (+). The sum of these vectors will
be represented by +++ --- ++ and is the principal vector in the direction
perpendicular to v,. The other principal vectors are the sums obtained from this
one by replacing successive + signs by — signs, as in the following example for 4
vectors (Fig.1b):
+ + + +
+ + + —
+ + - =
+ - — =

These sums and their symmetrics are the P-vectors. For example, (+ + + -)
means v, + v, + V5 - v,. Other + combinations do not give principal vectors.
The number of P-vectors is then twice the number, n, of v;-vectors. The domain
of each vector P is bounded by two straight lines in the P-plot, through the pole,
and perpendicular to the v;-vectors by which P differs from the two adjacent P’s
(dotted lines in Fig.lc). donversely, if the 2D P-plot is given, we can obtain the
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Fig.l - a) Four vectors are arranged in order of increasing angle with one of
them, v,. This defines the + orientation of the vectors and their order. b)
Construction to obtain the principal vectors: they are the vectors between
the origin, or pole, 0, and the points ++++, +++-, ++--, etc.. c¢) The . P-plot
and the v-polygon; note that P, is outside its own domain. d) The f-plot of
the wv-vectors is formed by arcs of circles each with a P-vector as a
diameter; each circle appears in the corresponding domain, and intersects
other circles at point cusps.

Fig.2 - Determination of a 2D continuous distribution of v-vectors from the P-plot.
The vector density v(8) is tangent to the P-plot and its modulus is p/2,
where p is the radius of curvature of the P-plot.
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2v;-set by simply joining the extremities of the successive P-vectors. We obtain
a convex, centro-symmetric polygon (the v-polygon) the edges of which are the
2v;-vectors (Fig.1c).

For 3D discrete distributions there is no simple algorithm to determine the
P-vectors. They have to be obtained by the general method described above.
However, their total number can be calculated by a simple equation (eg.26) that we
shall derive later and which depends on how the v;-vectors are distributed in

planes.

Adjacent P-vectors in 3D can be identified with the help of the f-plot. Two
P-vectors are adjacent if their spheres in the f-plot intersect along a line
(cusp). This line lies in a plane perpendicular to the 2v;-vector by which the
adjacent P-vectors differ. From the P-plot it is possible to construct a polyhedron
heving the 2v;-vectors as edges and the extremities of the P-vectors as vertices.
This will be discussed later in more detail. Therefore, if the P-vectors are
known and their adjacencies have been identified, it is possible to obtain the set of
v;-vectors. As an alternative (which can also be applied to 2D problems), the
v.-vectors can be obtained by subtracting all pairs of P-vectors. The resulting set
has the 2vi-vectors as a vector base, with coefficients +1.

PRINCIPAL VECTORS, CONTINUOUS DISTRIBUTIONS

When the distribution of v-vectors is continuous, the P-plot is a closed
curve (2D) or surface (3D) with no singularities. It is easily concluded from the
previous discussion that the direction, n, associated with each P coincides with the
normal to the P-plot at the point corresponding to that P. We assume that the
P-plot is known or has been determined from the f-plot (see below) and discuss how
the distribution of v-vectors can be obtained from the P-plot using a construction
similar to the one described for discrete distributions.

Consider first a 2D P-plot (Fig.2) an a point Q at which the unit tangent is
t. This vector t can be identified by the angle, 6, with a reference direction in the
plane. The tangent at a point Q in the neighbourhood of Q is defined by 6+d6. The
vector between Q and Q' is 2dv, in the direction of t, where dv is the v-vector
for the interval 8, 8+d6.

The modulus of 2 dv is the arc length, p d8, between Q and Q’, p being the
radius of curvature of the P-plot at Q. Therefore, the density function v(6) is
given by

V(@) = g t (12)

which completely defines the distribution of v-vectors.

A similar method to obtain, from the P-plot, the density of v-vectors in 3D
distributions is as follows. Consider a point Q in the P-plot (Fig. 3a) where the
normal is n. As already stated, n is in the direction associated with P = 0OQ.
Consider all points, Q’, in the P-plot for which the normal is at an angle d% with n.
A pair of P-vectors corresponding to two Q' points on each side of the normal n
(i.e. the normals at the two points and at point Q are coplanar) differ by two times
a principal vector of the v-vectors in the plane perpendicular to n. We refer to
these principal vectors as p-vectors. The length of each of these vectors is 2Rd¥,
where R is the radius of curvature of the corresponding normal section of the
P-plot. Let R, and R, be the principal radii of curvature at Q, and o the angle
between & normal section and the principal section of radius of curvature R;. Then

1 _cos® o, sin’ @
it el 13)

The planar plot of the p-vectors (p-plot) parallel to the tangent plane at Q and




ACTA STEREOL 1890; 9/1 103

within the range dy is then defined by this equation and is shown in Fig. 3b for
R,/R, = 2. This plot can be analysed by the graphical method previously described
for 2D distributions to find the v-vectors in the tangent plane. The tangent to the
p-plot at S defines the direction of a v-vector, of orientation 8 relative to the
principal direction of radius R;; the modulus of this vector is pd8d®, where o is
the radius of curvature of the p-plot at S (a factor 1/2 cancelled with the
factor 2 in 2Rdy). The density of v-vectors is then p, defined per unit interval of
¥ and unit interval of 0. Simple calculations lead to the following equations for the
orientation 8 as a function of o and for p/R,

(A - 1) cos® o + A (14)
(N-1)cos? & + 2 - N

tgh = tga

R71=[2-)\+3()\-1)coszoc]cos‘°‘(0-ot) 7 1s)

where

N = Ry/R; (16)

POLAR PLOT OF f(n): DETERMINATION OF P-VECTORS

The polar plot of f(f-plot) is formed by circles (in 2D) or spheres (in 3D)
each  associated with a P-vector and passing through the origin and the
extremity of the P-vector placed at the origin. The f-plot is formed by the
portions of the circles or spheres that are, in each direction, further away from
the pole. For continuous distributions, the f-plot is the external envelope of the
circles or spheres. Examples of 2D f-plots are shown in Figs. 1d and 4,
respectively, for 2D discrete and continuous distributions. The f-plots are centro-
symmetric in virtue of (9). Each circle or sphere appears in the domain of each
P-vector, and has that P-vector as a diameter. In 2D, adjacent circles are
associated with adjacent P-vectors; in 3D, adjacent spheres, which intersect along
a line, are associated with adjacent P-vectors.

The P-vectors can be obtained from the f-plot by the Tfollowing
construction, which is, to a certain extent, the reverse of the construction method
to obtain the f-plot from the P-vectors. At a point F of the f-plot in the direction
n (Fig.5), draw the normal v to the f-plot and locate a point C in it eguidistant
from F and the pole 0. The vector OC is the vector P/2 for the direction n. This
construction can be applied to 2D and 3D discrete or continuous distributions, and
is schematically shown in Fig. 5. Its validity for 2D distributions can be proved
quite easily. It will be shown later that the angle B3, between n and v is equal to
the angle between P and n. Since the angle between OC and n is also 8 (see Fig.
5), it follows that P is in the direction of OC. But the projection of OC in the
direction n is 5 P . n, implying that OC = 5 P.

In the case of discrete distributions, the points C are the centres of the
circles or spheres of the f-plot. This is also true for continuous distributions (Fig.
4) when the f-plot is the external envelope of circles or spheres through

the pole and the extremities of the P-vectors.

PLANAR SECTIONS OF 3D f-PLOTS

A 3D f-plot is usually displayed in planar sections through the pole, each
giving f(n) for orientations n in the plane of the section, of unit normal N.

The information on the principal vectors that can be drawn from the section
concerns exclusively the subset of P-vectors that are principal vectors for the
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Fig.3 - Determination of a 3D continuous distribution of v-vectors from the P-plot.
a) At the points in the dotted curve, the normals to the P-plot are at a
constant angle, d¥, with the normal, n, at point Q. b) The curve (eq. 13, for
R,/R;=2) gives the radii of curvature of the normal sections at Q; it is the
P-plot of the v-vectors in the tangent plane at Q, from which the vector
density function v(8,p) can be determined by the method of Fig. 2.

Fig.4 - An arbitrary P-plot (internal curve) of a continuous distribution of vectors
and the corresponding f-plot (external line), obtained as the external envelope
of circles each having a P-vector as a diameter. The distances to the pole in
the f-plot have been multiplied by 2, for the sake of clarity.
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Fig.5 - Determination of the P-vectors from a 2D f-plot. The P-vector associated
with the direction n is obtained by drawing the normal » to the P-plot and
locating the point C in it, equidistant from the pole and F. Then OC=P/2.

Fig.6 - The sharpness of a cusp in a 2D f-plot, at the orientation n, is associated
with a discontinuity in the principal vector, which changes from P, to P, .
The sharpness of the cusp is the angle u between the tangents to the f-plot
at the cusp: u=7-B8,-8, the normals to the f-plot at the cusp are v, and v,
their angles with n being 8, and B,, respectively.

K=

Fig.7 - Graph obtained by projection from the pole of the f-plot onto a sphere
surrounding the f-plot. Each region is associated with a principal vector.
Two regions are separated by a line cusp. The vertices of the graph
are the projections of the point cusps. Note that each line cusp is
continuous, with, for example, P, - P; = P; - Pg.
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directions, n, perpendicular to N. More precisely, the section of the f-plot is
related to the vectors Pp that are the normal projections on the plane N of that
subset of principal vectors One can write

P=Py, N+Pp an

and therefore
fm)=P.n=Pp.n (18)

This shows that the Pp-vectors can be obtained from the f-section by the
construction previously descnbed for planar distributions. The difference between
adjacent Pp vectors is 2vp, where vp is the sum of the projections of the vi-
-vectors in the same plane perpendicular to the plane N. That is, various v; may
contribute to the difference between two adjacent Pp.

In general, the reconstruction of the complete set of P- or v-vectors
requires various planar sections of the f-plot, since each contains information on
the projections of a subset of P- and v-vectors. The complete determination of
the P-vectors, and, therefore, of the v-vectors, can in principle be achieved from
a finite number of sections, if the distribution is discrete with a finite number of
v.-vectors. A continuous distribution of v-vectors can only be determined from the
complete, 3D, f-plot. Suppose that the set of P-vectors is known. In order
to obtain the section of the f-plot by a plane N we first project all P-vectors on
the plane and place them at a common origin. Circles are drawn in the usual way,
each having a projected P-vector as a diameter. The section of the f-plot is the
external envelope of these circles and . includes only some of them, which
correspond to the Pp-vectors of the spheres in the 3D-plot that are intersected
by the plane N.

CUSPS IN {-PLOTS

A singularity (cusp) occurs in the f-plot at the boundary between two
regions dominated by adjacent principal vectors that differ by a finite vi-
vector.

In 2D, point singularities occur for the directions, n, perpendicular to each
of the vl-vectors The number of cusps in 2D is then 2n, where n is the number
of v;-vectors (or the number of singularities in the 2D distribution of v-vectors).

In 3D, the basic singularity is a (planar) line cusp in the plane perpendicular
to a v;-vector. Two or more line cusps may intersect at a point originating a point
smgulanty These point cusps occur for directions, n, perpendicular to planes
containing a number, i(i > 2), of v.-vectors end are the intersection of i line
cusps. This implies that in general a line cusp will contain point cusps, and that
isolated point cusps cannot occur. A line cusp is a closed planar curve, containing
point cusps; at a point cusp, the principal vectors associated with the line cusp
change, but the difference between them is unchanged.

The number of line and point cusps in 3D f-plots will be discussed in the
f ollowmg section.

The sharpness of a point cusp in 2D or of a line cusp in 3D is related to
the derivatives of f(n) on either side of the cusp. Let us consider a point F in

the direction n in a region of the f-plot with no singularities, and find the
variation of f when n is rotated by an angle d@ in a direction t, i.e. for dn given

by
dn = df . t ' (19)
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Since n is a unit vector, the unit vector t is perpendicular to n. The differential
of f=P.n is

df =P .dn+n.dP (20)
But dP is perpendicular to n, as previously shown. Therefore

af _
df-p.t @1)

Consider a 2D f-plot. The angle, 8, between n and the normal v to the f-plot
is, from simple differential geometry, given by

—

tgg = 14 (22)

i
=3

Combining eqgs. (11) and (21) it is easily concluded that B is equal to the angle
between n and the principal vector P(n) (Fig.5).

The sharpness of a point cusp in a 2D f-plot can be defined by the angle, u,
between the tangents to the plot on either side of the cusp. Sharp cusps
correspond to small values of 4. The angle 4 is given by (Fig.6)

L=7- B+ B) 23)

where B, and B, are the B angles on either side of the cusp. The angle u is
therefore complementary to the angle between the two (adjacent) principal vectors
associated with the cusp (Fig.6). Since two adjacent P-vectors differ by a 2v;-
-vector, it is clear that large v; favour sharper cusps, although the sharpness
depends on all v-vectors.

1

Consider now a 3D line cusp associated with two (adjacent) P-vectors, P; and
P, , which differ by 2v,. The line cusp is in a plane perpendicular to v;. For each
orientation, n, along the cusp we take a section of the f-plot by a plane containing
n and perpendicular to the plane of the line cusp. The sharpness of the cusp in
this section is measured by the angle, u, such that (7 - u) is the angle between the
projections of P, and P, on the plane of the section. When the plane of the section
coincides with the plane of P, and P, (and also of wv;), and is therefore
perpendicular to the plane of the cusp, the angle 4 is a minimum and equal to the
angle between the tangent planes on either side of the cusp. This angle measures
the sharpness of the line cusp and is, again, complementary to the angle between
the principal vectors associated with the cusp. The sharpness of a line cusp will in
general change at a point cusp.

A point cusp in a 3D plot occurs at the intersection of two or more line
cusps. The sharpness of the point cusp can be measured by the solid angle, £,
defined by tangent planes to each sphere meeting at the cusp; 2 is equal to 27
minus the solid angle subentended by the P-vectors associated with the point cusp.

THE v; - POLYHEDRON AND THE NUMBER OF PRINCIPAL VECTORS

Consider the P-plot of a 3D discrete distribution of v;-vectors and the
associated f-plot. We recall that adjacent (spherical) regions in the f-plot, i.e.,
regions intersecting at a line cusp, are associated with adjacent P-vectors and
these differ by the v;-vector perpendicular to the plane of the line cusp. The
number of line cusps is then twice the number of v;-vectors.

Suppose we place the f-plot inside a sphere and project from the pole onto
it the wvarious regions (spheres associated with each P-vector) and their
intersections. Part of this projection is schematically shown in Fig.7. The complete
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projection is the graph of a polyhedron with faces (the regions), edges (the line
cusps) and vertices (the point cusps). The number of faces, F, equals np, the
number of principal vectors. The number of vertices, V, is twice the number of 7-
planes that can be defined with the v.-vectors, a 7-plane containing two or more
v.-vectors. Let n; be the number of %-planes containing i vectors vi- Then

1
V=23 24)
1

This is also the number of point cusps.

The degree of a vertex (i.e. the number of edges that meet at the vertex)
associated with a 7-plane containing i vectors is 2i (i line cusps go across the point
cusp). Since each edge is connected to two vertices, the number E of edges is

i
Finally, using Euler’s relation, F+ V - E =2, we obtain for the number of

principal vectors

nP=22(l'1)ﬂl+2 (26)
1

We can also define a polyhedron (the vi~polyhedron), the vertices of which
‘are the extremities of the P-vectors and the edges of which are obtained by
joining adjacent P-vectors (they are therefore the 2vi-vectors). The faces of this
polyhedron are planar, each face corresponding to a ~*-plane. In fact, two faces
appear in the polyhedron for each w-plane and the faces are centro-symmetric
polygons. This polyhedron is obviously the dual of the polyhedron previously
defined, based on the f-plot. We then conclude that it is always possible to
construct a polyhedron, the edges of which are the vectors v, of a given set of
vectors (no two parallel vectors). The numbers of faces, edges and vertices in the
vi-polyhedron are, respectively,

F=2Eni
i
E=2%in en
i
V=23 G-1n+2
i

A few examples follow. The vi—polyhedron of three non-coplanar vectors (n, = 3) is
a parallelipiped. For n vectors, with no three in the same plane, the number of
faces in the vi-polyhedron is n(n-1) and the number of wvertices (number of
principal vectors) is n®-n+l. If the vi-vectors are the edges of a regular
tetrahedron (n; = 4, n, = 3), the vi-polyhedron is the regular Kelvin’s polyhedron
with 14 faces (8 hexagonal and 6 square faces). Polyhedra with edges of equal
lengths can be constructed as vi-polyhedra of a set of v.-vectors of the same
length; in particular, there are polyhedra of this type with n(n-1) four sided
faces, for any n.

SUMMARY

A detailed analysis of polar plots formed by portions of circles (2D) or
spheres (3D) was undertaken. These are polar plots of functions f(n) defined by
egqs. (1) or (7), (8) and are based on a distribution of vectors, v. Examples of
functions of this type can be found in problems of stereology of oriented
structures and in the calculation of the surface energy of a crystal, when the
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atoms interact by a pairwise central potential.

The analysis undertaken was based on the concept of principal vectors. The
principal vector P(m) for a direction mn is the sum of the v-vectors that has the
largest normal projection on n. A graphical construction was developed which
allows the determination of the P-vectors (or of the P-plot) from the f-plot. It was
then shown how the v-vectors can be obtained from the P-plot by another
graphical construction. In conclusion, the distribution of v-vectors can be obtained
graphically from the f-plot. The v-vectors obtained in this way form a reduced
set, i.e. a set with no two parallel vectors. When sections of the 3D-plot are
available, instead of the complete f-plot, information can be derived by these
methods on the projections of the v-vectors on the plane of the section.

If the distribution of v;-vectors is discrete or has singularities, cusps
appear in the f-plot: point cusps in 2D plots and line cusps in 3D plots, each being
associated with a wvj-vector or with a singularity of the v-distribution. In 3D
f-plots, line cusps in general intersect producing a point cusp. The sharpness of
the cusps was shown to be directly related to the angle between the principal
vectors associated with the cusp.

The extremities of the principal vectors in the P-plot define a (convex)
polygon in 2D or a (presumably convex) polyhedron in 3D, the edges of which are
the v;-vectors of a discrete and finite set of vectors. It was shown how the vi-
-polygon or the v;-polyhedron can be constructed. The concept of principal
vectors leads to simple methods for constructing polyhedra, the edges of which are
the vectors of a given set of vectors.
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