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ABSTRACT

The test of Mardia (1976) was successfully used for the
distinction of anisotropy of cracks in planar sections made
through agricultural clay soils. Assuming a certain probability
model for the directions of normals to cracks (modified von Mi-
ses distribution g(f) for cracks in planar sections, Dimroth-
-Watson distribution h(¢,3) for cracks in space), the rose of
the density of intersections with testing lines of different
orientations can be derived (m(a) for planar sections, m(¢,3)
for space). This allows to estimate the parameters of g(f3) or
h(@,"3) from the observed roses m(&) or m(®,3), respectively,
as well as to assess the density of cracks in planar sections
(Ly) or in volume (Sy). The proceddres are illustrated by some
examples of heavy clay soils in East Slovakia Lowland.
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THEORY

For cracks in agricultural soils, cylindrical symmetry of
the directional distribution around the vertical axis is to be
expected in all but very special cases. (Sloping lands and slo-
ping layers in weathered sedimentary rocks can belong to these
special cases, as reported by Scott et al., 1987). It suffices
then to study the two-dimensional anisotropy in vertical sec-
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tions. A convenient test could be that of Mardia (1976; cf. al-
so Benes, 1986), which is based upon a multiple correlation be-
tween a suitable linear random variable X and the corresponding
directional cosines cosf, cosa in the plane of the section.
Here, 3 is the angle between the x-axis and the direction under
consideration, while & is the angle between the y-axis and the
same direction. Evidently, cosa=sinf. The linear random variable
X, which depends upon the direction, and the anisotropy of which
is to be quantified, must be chosen in such a manner that it
satisfy as closely as possible the linear equation assumed for
the alternative hypothesis, namely the equation (2) given below.

As a rule, one can recommend the intersection density m as
the X-variable. It is defined as the number of intersections of
cracks with testing lines of a given direction, divided by the
total length of the testing lines within the sample section. If
the anisotropy is perfect, i. e. if all cracks are parallel,
say, to the y-axis, the intersection density is:

' m=_Ll, . Icosﬁ I @)
where L, ... density of cracks (cf. also the equation (5)),

B ... angle between the testing lines and the x-axis.

The equation (2) cannot be, of course, precisely identified

with (1). However, the overall trends can be made similar, which
is important for correlation calculations. Other examples of
possible X-variables are: the total number of intersections on

a testing line,. the hydraulic conductivity, the electrical con-
ductivity, etc. . )

Since the distribution of crack directions is axial (X(f3) =
= X(fB3+m) for all 3, irrespective of the definition of X), we
must replace the angle B in the original Mardia s test by its
double-value 2f3; otherwise the coefficients of correlation would
be low and insignificant. Then, the null hypothesis states that
the cracks are isotropic (X(f)=const.), while the alternative
hypothesis assumes a linear dependence:

X = a + b.cos2f8 + c.sin2f3 (2)
where a, b, ¢ ... suitable constants. This equation corresponds
well to the cardioid distribution (Mardia, 1972, p.51; Marriott,
1971; Streit, 1978) or to the first terms in Kanatani’'s (1985)

series expansion.
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Let the sampling correlation coefficients between X and cos2f,
X and sin2fB, and sin2fB and cos2f3 be Typs Tq3s andzrzj, respecti-
vely. Then the multiple correlation coefficient RX,Zﬁ is defined
as follows:

Ri,ZB = (r%2 + r§3 - 2ry,Ty3T93)/(1 - r§3) (3)
The product n.Ri 23 where n ... number of observations, has an
asymptotic xz-diétribution with two degrees of freedom. Adequate
comparisonsAwith one-side X%-quantils are conceivable for n »20.
The test requires that the individual observations, i. e. the
pairs [Xi,ﬁi] for i=1..n, be independent.

A further task is to estimate the probability density of
crack directions (directions of normals to cracks) g(B3) from the
measured rose of the intersection density m(&), where a= - /2
is the angle between the y-axis and the direction of the testing
lines, -n/2<a<7n/2. The y-axis is considered to be the main
axis of anisotropy, with which the cracks tend to be parallel.
The estimation of g(fB) from m(&x) is, however, very sensitive to
small variations of m(&), and many procedures fail, if the ani-
sotropy is strongly developed. The non-parametric graphical me-
thod based upon the Steiner compact (Rataj and Saxl, 1988)
brings a partial solution of this problem. _

Another approach, preferred here, is to assume a certain
realistic probability density function just for the expected
result, i. e. for g(B), and to look only for its parameters, by
means of investigating m(&). The distributions of crack direc-
tions in soils are~hostly‘unimodal and symmetrical (g(f3) =
g(m-f3), if the x-axis or y-axis coincides with the main axis of
anisotropy). A slightly modified von Mises distribution (Mardia,
1972, p. 57; Streit, 1978):

g(f) = (LA/IO(k)).exp(k.coszﬂ) (4)
vhere
n
7t e dB =L, (5)
0
LA . density of cracks related to the area of the section,
k concentration parameter (k=>0),
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Io(k) ... modified Bessel function of the first kind and of the
order zero,
B ... angle between the x-axis and the direction of the nor-

mal to the crack, 0<f<m,
seems to be a sufficient approximation for most soil crack struc-
tures. It can describe, in contrast to the cardioid distribution,
even the cases of extremely strong anisotropy, when k approaches
infinity and g(f3) becomes close to the Dirac delta-function.

The choice of the von Mises distribution was recommended by
Streit (1978) and Weibel(1980, p. 272). Mardia (1972, pp. 48-71)
discusses several circular and angular distributions, among
which the von Mises distribution and the wrapped normal one turn
out to be the most natural, the most effective, and very close
to each other. There is not yet sufficient amount of data to
prove, whether the von Mises distribution does justice to the
orientation of soil cracks or not. At least, our data do not
contradict to the equation (8) below, which is based upon this
distribution. The main axis of anisotropy is identical with the
y-axis in the equation (4) and further throughout this paper.

The rose of the intersection density m(a) can be derived
from (4), using a well-known differential equation (Hilliard,
1962; Stoyan et al., 1987, p. 241):

g(z) =nm/2 . [dzm(z)/dz2 + m(z)] (6)
where z ... an independent variable which means o in m(z) and
Bin g(z).

The appropriate boundary conditions are:
m(z) = m(z +J7) dm/dzlZ = dm/dzlZ . (7

The solution of (6), (7), after the substitution for g(z) from
(4), is:

m(ex) = ba . [exp(-k).|coso(|.erfi1/[k(l+c052a)] +

Io(k).1/(217k)

+ exp(k).Isin&'.erfw/[k(l-COSZGO]]
The mean density of intersections of cracks with testing lines

(8)

of arbitrary directions is:
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/2
7t om0 da =1, €2
-1/ 2
One can show that
IL = 2 . LA /T (10)
The functions erfi and erf in (B8) are defined as follows:
X X

erfi(x) = 2/v/m. exp(tz)dt 5 erf(x) = 2/4/. exp(—tz)dt
0 0
Estimates of the concentration parameter k can be obtained
- from the measurements of intersection density m(&) on testing

lines in two different directions, preferentially a=0 and &=m/2.
This procedure is usually referred to as the "short-cut estima-
te", because it reduces considerably the extent of the necessary
data and calculations. The ratio of both intersection densities:

f = m(n/2) / m(0) , (11)
equals, as a consequeﬁce of (8):
| £ = exp(2k).erf1/(2k) / ertiq/(2k) (12)

If one knows f by measurement, the concentration parameter k can
be estimated by inversion of (12). Estimates of LA, either from
m(JT/2) or from m(0), are straightforward:

Ly = d,(k) . m(0) or Ly = dy(k) . m(1/2) (13)

where
d, (k) =9/(2mk) . T (k) .exp(k)/ertiy/(2k) (14)
dp (k) =9/(2mk). T (k) .exp(-k)/erty/(2k) (15)

Similar approach can be applied in the three-dimensional
case, assuming rotational symmetry of the joint probability den-
sity function h(y,3) of the directions of normals to the cracks
(... altitude, ... colatitude). This assumption is corrobo-
rated by the results of the test of anisotropy given below. Ac-
cepting the Dimroth-Watson distribution (Mardia, 1972, p. 233)
for h(®,9), we can make use of the results by Cruz-Orive et al.
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(1985), where only random lines need to be replaced by testing
lines and testing planes by random surfaces. Again, it is pos-
sible to obtain short-cut estimates of the concentration parame-

ter k from the ratio:
f = m(p,/2) / m(p, 0) (16)

where m(@,3) ... the rose of the density of intersections of
cracks with testing lines of the direction (¢,3)
(¢ is arbitrary, because of the rotational symmetry),
and estimates of SV (density of cracks per unit soil volume):

S, = cv(k) . m(p,0) or SV = ch(k) . m(p,/2) (17)

Vv
where the coefficients cv(k) and ch(k) can be computed numeri-
cally, by means of procedures described by Cruz-Orive et al.

(1985). The concentration parameter k will be mostly negative,
corresponding to the "girdle-type" distribution of normals to

cracks.

MATERIALS AND METHODS

Clay agricultural soils in East Slovakia Lowland were in-
vestigated in the field by making horizontal and vertical secti-
ons (several m2 in area). Cracks were followed visually and
drawn by hand on a sheet of millimeter paper. The pictures were
then investigated manually by making testing straight lines
either horizontally and vertically, or in an isotropic uniform
random (IUR) manner, and counting the intersections. For compa-
rison, the cycloid test system according to Baddeley et al.
(1986) was also used.

For this paper, two samples were chosen for detailed inves-
gations, namely: .

(A) Vertical section 60 x 80 cm (identification data: Milhostov,
31.8.78, SVT, 3rd part, SW wall, 1:5),

(B) Horizontal section 120 x 120 cm (identification data: Milhos-

tov, 26.8.78, 10 cm, near to V5P, 1:10).

These sections were similar to, but not identical, with those

published by Dolezal (1982) or by Stoyan et al. (1987, p. 254).

Small differences in the methodology of preparation between these

two sections did not allow to consider them as two sections of

the same body. They were, therefore, treated separately. No dis-
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tinction was made between cracks of different widths and between
different soil layers in the vertical section. The variances of
the measured quantities wére estimated with the help of the ap-
proximate formulae developed by Dolezal (1976).

The results given below in the tables 1 and 2 were compiled

from a wider set of data.

RESULTS AND DISCUSSION

1. Test of anisotropy:

10.597

"
n

Section A: n.Ri,ZB 12.246; X%(a=0.995>

. 2 _ . 2 ¢
Section B: n'RX,Zﬂ = 5.133; Xz(a-0.900) 4.605
There is not sufficient warranty for anisotropy in section B.

2. Analysis of anisotropy and crack density:

(section A only; results are rounded, standard deviations are
given in parentheses)

Horizontal testing lines: m(¢,n/2)=0.121(0.009) cm'l; n=13
Vertical testing lines: m(®,0) =0.043(0.008) cm™%; n=17

f = mlp,/2) / m(®,0) = 2.809(0.541)

2.1. Two-dimensional analysis: k = 1.887(0.512)

d, = 3.111(0.483); L, = d, . m(®,0) = 0.134(0.032) cn}
d, = 1.109(0.047); L, = d_ . m(®,n/2) = 0.134(0.012) cn™’
From isotropic uniform random testing lines:

n=42; 1,=0.079(0.007) ont; Lp=7.1,/2=0.124(0.011) cn” !
2.2. Three-dimensional analysis: k = -3.353(1.202)

c, = 4.594(0.347); S, =c_ . m(g,0) = 0.198(0.038) cm”}
Cp = 1.636(0.011); SV = Cp - m(@,m/2) = 0.198(0.016) cm'l
From the cycloid test system: I, = 0.109 em !

Sy = 2.I = 0.218 cm! (variance not estimated).

3..Differences in anisotropy of cracks with various widths

and in various depths in the soil:

Only demonstrative examples are given here, without inten-
tion to give a representative picture. The concentration parame-
ters k relate to the Dimroth-Watson distribution. There is a
tendency for greater anisotropy of larger cracks and in deeper
soil layers, which has natural genetic reasons not yet fully
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explored.

Table 1. The influence of the crack width upon the concentration
parameter k (Plesany, 1973, depth 50-70 cm, vertical

sections)
widths of cracks (mm) k
0.5 -1 0
2 -3 -1.39
4 - 5 -3.59
6 - 8B -4.99

Table 2. The influence of the soil depth upon the concentration
parameter k (Milhostov)

___________ Uy SR
1978 1979
Depth fF-------------c"odoocmmmee -
k for crack widths (mm):
(em)  pe--me=ea B et e
1 -2 2 0.5 1 -2
0 - 20 -0.93 -5.28 -0.68 -6.43
20 - 40 -4.50 -2.45 -2.91 -2.97
40 - 60 -4.84 - -4.15 -9.74
60 - B0 - ] - -5.56 -2.71
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