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ABSTRACT

Two computer-simulated random packings of monosized
spheres are characterized quantitatively. The wall effect and
the anisotropy of the structure are studied. Two mean parame-
ters, the number of particles and the number of contacts per
unit volume, are determined as a function of the size of the
field of measurement. The pair correlation function is esta-
blished and the effect of gravity on the stackings is
investigated.
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INTRODUCTION

The context of this work is the three-dimensional quan-
titative analysis of digitized structures. As a first step, the
use of a 3D computer-simulated random packing of spheres is
very convenient.

Thus, the aim of this paper is not to perform a general
study of 3D packings of spheres, but to characterize quantita-
tively, in a practical and detailed way, one structure which
will be further used for testing 3D transformations.

* Present adress : Confocal Technologies Ltd., Mulberry place,
Liverpool L7 7HJ, United Kingdom.
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SIMULATIONS OF RANDOM PACKINGS OF MONOSIZED SPHERES

Two random 3D packings of monosized spheres were simu-
lated on a SUN 3 computer using the Fortran program of Visscher
and Bolsterli (1972). Each simulation has been performed as
follows

- The simulation is made inside a box (0 < x < 40,0 < y < 40,
0 < z < 40) using monosized spheres of radius r = 1.

- The balls are dropped successively from z > 40 at random x
and y coordinates.

- if the ball hits the bottom of the box, it stops.

- if the ball hits one of the previous balls, it rolls down-
wards to get further contacts up to the stability defined by
the "gravitational forces".

It must be noticed that each time a ball is cut by a side of
the box in X and Y directions, the outside part of the ball
reappears inside the box on the opposite side.

This procedure is used to build two simulations :

a) Simulation S1 : The bottom of the box is flat and the x and
y coordinates of the falling balls are randomly chosen.

b) Simulation S2 : The simulation S2 is built upon the simula-
tion S1, the top layer of S1 being taken as the bottom of the
box. The balls are dropped above the minimum height of the
stacking to insure a kind of smooth filling of the box. For
that purpose, a square grid (200x200) is placed above the box.
At each step the vertical distance h between each point of the
grid and the top layer ball is computed and the new ball is
dropped from the node for which h is maximum.

In these simulations, the total number of particles is
approximately 9000 and the time necessary to perform the simu-
lations is roughly seven hours.

CHARACTERIZATION OF THE SIMULATIONS

Several phenomena will be successively studied on the
two structures S1 and S2 :
- the wall effect
- the field size effect
- the anisotropy
- the local fluctuations in the stackings
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Fig. 1 : Complete, (Z0), and restricted, (Z4), fields sweeping
the simulation box along Z direction.

1) Wall effect

The plane walls of the simulation box induce some
local order on the positions of the balls. This effect is limi-
ted to the vicinity of the walls in the three directions X,Y,Z.
But, owing to the simulation process, its magnitude should not
be the same for these three directions. Therefore, an indivi-
dual assessment of the wall effect along each axis is required.
For instance, the "pure" wall effect along the 2 axis will only
be obtained after removal of the wall effect along X and Y.
This is achieved by the following procedure (Fig.1l) :

- The simulation box is intersected by successive parallel pla-
nes at increasing altitudes in the Z direction

- Two kinds of fields of measurement are then defined: complete
fields (Z0) consisting of the whole intersection with the
simulation box and restricted fields (Z4) obtained by removing
from (Z0) an outer strip of width 4 units along the directions
X and Y. A justification for the value 4 units will be given
later on.

The first analysis is the determination of the areal
fraction, A, (P), ( or volumic fraction V,) of particles at
increasing values of coordinates. This parameter is calculated
from the part of the particle traces which lies inside the
field of measurement. The results of analysis in X and Z direc-
tions are diplayed on figure 2. The distinction between the
complete fields - (X0) and (Z0)- and the restricted ones - (X4)
and (Z4)- is not clear-cut but it must be noticed that the mean
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Fig. 2 : Evolution of areal fraction of the particles, A, (P),

in a plane sweeping the simulation box.

value for A, is significantly lower in the first case (0,569
instead of 0,579). When a comparison is made between the sam-
plings in X and 7z directions (e.g.,(X4) and (24)) a noticeable
difference in the shape of the curves is observed near the ori-
gin. The sharp fluctuations of (Z4) must be ascribed to an
effect of the plane bottom of the box in simulation S1. The
absence of this phenomenon in (X4) is due to the periodic boun-
daries conditions imposed in the process of simulation for
horizontal directions. The fluctuations observed for (2Z0) and
(24) virtually vanish from abscissa 4 onwards. This indicates
that the wall effect is 1limited, in our case, to a shell of
thickness four radii, instead of three or four diameters obser-
ved in previous works (Benenati and Brosilow, 1962 ; Gotoh et
al., 1978a). As expected, the simulation S2, built above the
simulation S1, exhibits no wall effect in Z direction.

The second analysis deals with the mean coordination
number of particles, N.. The local value of this parameter is
given by twice the ratio between the number of particle con-
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Fig.3 : Evolution of the mean coordination number of particles,
N. , according to their position in the box.

tacts and the number‘of particle centers in the volume bounded
by two successive parallel planes. As can be seen on figure 3,
N, is less sensitive to the wall effect than A, . Nevertheless,
the mean value of N, increases from (X0) and (20) to (X4) and
(Z4) . Besides, the low value of N, near the origin is explained
by the fact that the particle neighbours are present only in a
half-space. The difference between the values of N, in this do-
main ( ~ 3,5 for (XO) and (X4) as opposed to ~ 4,2 for (z0) and
(24)), reflects some regularity of the stacking near the bottom
plane.

2) Field size effect

It is obvious that the measured parameters are meaning-
ful only if the field of measurement is representative of the
whole structure. The size of the field must satisfy two oppo-
site requirements : (i) it must be small enough in order to
eliminate the wall effects (ii) it must be large enough to be
representative of the structure. The simplest way to get an
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Fig. 4 : Number of particles, P,, and number of contacts, C,,

per unit volume for increasing sizes of the field
(cubic box of edge e)

estimate of the right field size is to measure the parameters
of interest in successive boxes of increasing size. The results
obtained for P, and C, ( respectively number of particles and
number of contacts per unit volume ) are presented in figure 4
for simulation S1 and S2. The decrease in the ordinates of the
curves of C, near their right end is due to the wall effect.
Chaotic values are found at the beginning of the curves corres-
ponding to small field sizes.

These results indicate that, for random packings of
monosize spheres of radius 1, the minimum field size should be
approximately 20. It will then contain about 1000 spheres.

Table 1 summarizes the values found for the main para-
meters in the largest field without wall effect for simulations
S1 and S2.
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Table 1 : Global characteristics of the two simulations.

Number
of v, P, C, N,
spheres
Simulation S1 4537 0.580 0.138 0.415 6.01
Simulation S2 4606 0.589 0.140 0.420 6.00

3) Anisotropy

Since the construction of stackings simulate a gravita-
tional field, the resulting structure could possibly present an
anisotropy (Tory et al. 1968 ; 1973).

As a simple way to study the spatial orientation of the
segments joining two centers of particles in mutual contact, we
have measured their projections on each axis (Fig.5). If the
structure were isotropic the mean length of the projection, h,
would be equal to 1 (Tory et al. 1973). The mean values of
projections in X, Y and Z directions for the two simulations S1
and S2 are gathered in table 2. The expected anisotropy effect
is obvious in the Z direction.

Table 2 : Mean lengths of projections of segments joining
the centers of touching particles in X, Y and 2
directions.

Simulation S1 Simulation S2

hy 0.991 1.001
h, 0.992 1.001
h, 1.092 1.081

The analysis has been taken a step further by esta-
blishing the distribution of angles ¢,, ¢, and ¢, between the
segments = and the reference axes X, Y and Z. In the case of an
isotropic structure, for an oriented angle 0 < ¢ < w, the
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Fig. 6 : Orientation spectra of biparticles along the X and 2
directions.
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probability for this angle ¢ to be comprised between ¢ and
@ + do is 1/2 sine de. So, the percentage of orientations
within + 0.5° of a given value ¢ should be :

N%(¢) ~ 1/2 sin ¢ (m/180) 100

The results are visualized on figure 6 for the two
simulations S1 and S2. In each case, the experimental curve
deviates from the theoretical one corresponding to the above
formula. But the anisotropy is much more striking along the
7 direction. 1In that case, a maximum is found for an angle
¢ = 55° (and the symmetrical one ¢ & 125°). This closely agrees
with the previous observations of Tory et al. (1973).

In connection with this result it may be recalled that,
according to Bernal (1964), most of the constitutive polyhedra
of a random structure are tetrahedra (73%). In the model of
flattened tetrahedral units proposed by Gotoh et al. (1978b),
the mean height of a tetrahedron equals 1.08 times the particle
radius. This is just the value already mentioned as the mean
projection length of the segments joining the centers of a
biparticle. Moreover, if one assumes that the tetrahedron
possesses an equilateral basis and that the most probable
orientation of that basis is the horizontal one, one finds 57°
as the angle of inclination of the three oblique edges with
respect to the vertical axis. The fair coincidence of that
value with the abscissae of the peaks on figure 6 provides a
strong hint that the most typical geometrical unit in random
packings constructed under gravity is a flattened tetrahedron
(with no mutual contact between the three particles of the
basis). It may be noted however, that the original model of
Tory et al., did not imply equal sides for the basis of the
tetrahedron, nor horizontality of that basis. This may account
for the relatively large width of the peaks in the orientation
spectra of figure 6. The aforementioned coincidence between the
height of the "“typical" tetrahedron and the observed mean
length of projections ﬁz may therefore be fortuitous.

4) Local fluctuations in the stackings

In order to get more information about the local arran-
gement of particles, we will first deal with the pair correla-
tion function of particle centers and then with interparticle
contacts.
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Fig. 7 : Pair correlation function for simulations S1 and S2.

a) Pair correlation function of particle centers

The pair correlation function is a basic tool for the
study of local fluctuations of density in a random system of
points. This second-order property (Diggh 1983; Kénig 1986) may
be defined by considering a spherical shell of radius x and
thickness dx, centered on one of the points of the system. If
the expected number of points whithin that shell is designated
as R, (x). dx, the function R, (x) is the radial distribution
function and the pair correlation function, g, (x), is given by:

g9, (x) =R, (x) / 4m® N,
where N, is the expected number of points per unit volume.

So, deviations of g, (x) from unity can be regarded as relative
variations of local values of Ny .

Practically, to get g, (x) from our simulations, three
kinds of 3D fields must be defined

- the complete field which coincides with the whole simulation
box,

- the restricted field which excludes all the regions subjected
to wall effects,

- the central field which is the domain where any reference
particle center must 1lie in order that its surroundings are
accessible to measurement without bias due to boundary effect.
In our case, taking x < 10, the edges of the three cubic fields
had respective lengths of 40, 32 and 12 units. The number of
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particle centers available for the experimental determination
of g, (x) was roughly 4600 in the restricted field and 240 in
the central field.

The results are presented on figure 7. There appears to
be no significant differences between the curves obtained for
the two simulations. In both cases,clear peaks are observed at
abscissae of about 2, 4 and 5.5 units. After the last peak in
the region of abscissa 7.5, the curve merges into a continuum
indicating the absence of 1long-range order. These features
roughly agree with the data of Matheson (1974) for a simulated
packing with V, ~ 0.61 . No bump being discernible at the
abscissa 2(3 , the second peak fails to exhibit the splitting
classically considered to be a characteristic feature of dense
random packings (Finney 1983). This is probably due to the
joint effects of the relatively low density of our structure
(V, ~ 0.59 instead of 0.64 for dense random packings) and to
its anisotropy. Indeed, it is clear, from the above definitions
of R, and g,, that these two functions loose some part of their
significance when the structure is anisotropic.

b) Local distribution of contacts

It is well known that the mean coordination number, N,
(mean number of contacts around a particle)is usually close to
six. This has been established both in experimental (Bernal and
Mason 1960, Finney 1970) and computer-simulated (Visscher and
Bolsterli 1972, Bennett 1972, Tory et al. 1973, Matheson 1974,
Powell 1980, Jodrey and Tory 1985) random packings. A theore-
tical justification for that result has been given by Bennett
(1972) .

Table 3 : Distributions of numbers of contacts for the two
simulations.

Number Simulation S1 Simulation S2

of
contacts Percentage Percentage

3 0.11 0.02
4 4.39 3.10
5 24.77 25.58
6 42.76 45.94
7 23.10 22.08
8 4.54 3.19
9 0.33 0.09
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Fig. 8 : Dissymmetry in the particle surroundings with respect

to an horizontal plane (simulation S2).

Table 4 : Frequency of contacts around each particle in
different half-spaces.
SIMULATION 81
Number Percentage Percentage Percentage Percentage
of left right upper lower
contacts| half-space half-space half-space half-space
1 3.22 3.26 3.77 0.48
2 24.40 24.32 24.37 10.07
3 45.43 45.46 44.96 79.13
4 23.80 23.29 22.47 9.76
5 2.91 3.42 4.26 0.55
6 0.24 0.15 0.18 0.00
SIMULATION S2
Number Percentage Percentage | Percentage Percentage
of left right upper lower
contacts| half-space half-space half-space half-space
1 2.65 2.35 2.78 0.20
2 24.08 24.71 24.67 8.49
3 47.74 47.74 47.25 83.85
4 23.17 22.84 22.58 7.01
5 2.34 2.21 2.61 0.46
6 0.02 0.15 0.11 0.00
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In our case, the mean value cobtained for N., after eli-
mination of the wall effect, is 6 for both simulations.
However,this 1is only a mean value and the number of contacts
around each sphere is not constant, as shown in table 3.

It may be recalled that the simulation process implies
that each ball is supported by three neighbours and as a conse-
quence of the stability criterion, these three neighbours will
almost always be located below the horizontal plane passing
through the ball center. Since the distribution of number of
contacts extends over a range from 3 to 9, the dispersion must
be due to the balls 1lying above that horizontal plane (P).
Henceforth, the statistical repartition of contacts should not
be the same above and below plane (P). On the other hand, there
is no reason for the existence of a dissymmetry with respect to
a vertical plane. From the data of table 4 represented on
figure 8, one can see that the above conjecture is well veri-
fied : a very narrow peak is observed for the histogram corres-
ponding to the lower half-space.

This local dissymmetry due to gravity is to be compared
to the anisotropic behaviour of electrical conductivity of a
real particle stacking of spheres under the influence of
pressure (Troadec and Bideau 1981).

CONCLUSION

Although particle stackings of relatively low compacity
such as the one studied in this paper probably provide a poor
model for the molecular sructure of liquids, they are likely to
be useful for understanding the structure and properties of
granular materials (Finney 1983).

Stereological methods are presently available in the
literature for the determination of both the first-order and
the second-order properties of these materials (Hanisch and
Stoyan 1981 ; Hanisch et al. 1985 ; Stoyan et al. 1990). A com-
monplace assumption, in such studies, consists of considering
the structure-as statistically uniform and isotropic. Though
this is not a prerequisite for the determination of properties
such as the radial distribution and the pair correlation func-
tions, it greatly simplifies the sampling procedure and the
interpretation of the results. From the specific example exami-
ned in this paper, however, it appears that even in the sim-
plest structures (monosized spherical particles), it may be
quite unsafe to take as granted the fulfilment of the unifor-




232 BHANU PRASAD P ET AL: CHARACTERIZATION OF 3D PACKINGS

mity and isotropy conditions. Both the wall effects and a too
small sample size can induce non uniformity. Gravity can result
in anisotropy and local dissymmetry.

In most practical situations, departures from uniformi-
ty will be easily circumvented, by working on samples of suffi-
cient size and restricting properly the field of analysis. On
the other hand, gravity effects, which bear, not on the measu-
rements, but on the structure itself, can obviously not be
eliminated.
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