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ABSTRACT

The efficiency of 1linear point counts for the
estimation of feature area in a two-dimensional matrix is
investigated. With the line intercept method providing a
reference estimator, simple formulae are derived to obtain
the increase in error for point count estimators over the
same length and the number of counts required to achieve the
same variance. In an application to the estimation of areal
cover in an arid grassland region, the formulae are seen to
be a valuable aid in determining the precise spacing and
number of grid points required to achieve a specified
accuracy.

INTRODUCTION

It is well known that the following simple estimators
of the fractional area of features in a two-dimensional
matrix are unbiased:

L;, : the sum of linear transect intercept lengths
divided by total transect length

Pp : the sum of point count intersections divided
by total number of counts

Al though the analysis extends, only point counts with
uniform spacings A will be considered here because random
point counts are usually bothersome in practice.
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Of the above, it is intuitively obvious that the method
based on Lj provides the lowest variance for a fixed
transect length since the point count method reduces to this
as the spacing A between counts approaches zero. However,
to achieve a desired variance it may be less time consuming
to take point counts over longer transect lengths than that
needed for line intercept measurements. Moreover, it is
practically infeasible in some cases to obtain accurate
intercepts. For example, it 1is difficult to run a
continuous measure through vegetation consisting of dense
shrubs. On the other hand, it is simpie enough to force the
spokes of an unrimmed wheel through such vegetation and to
count the number of spokes falling within and outside
designated vegetation types.

The aim of this paper is to provide simple formulae
that can be used to determine the following with respect to
lineal intercept estimators of a given length L:

(a) the relative increases in error e
incurred when point counts of differefit
uniform spacings A are taken over the same
length L;

(b) the number n or additional 1length of
point counts réquired at specified uniform
spacings A to achieve the same variance as

Ly,

The theoretical foundations to provide such answers are
given in the next section as are the required formulae.
These are followed by results to corroborate them. A simple
but flexible covariance function for the distribution of
areal features is assumed to illustrate the results. In the
final section, the usefulness of the formulae 1is
demonstrated in an application involving the estimation of
areal cover in an arid grassland area of Central Australia.

RELATIVE EFFICIENCY OF POINT COUNT ESTIMATION

Consider a second-order stationary random closed set X
on the real line with centred covariance function C and
lineal proportion p = Pr (0O € X), and let ¢ = 1-p. X may
in turn have been obtained by stereological sampling from a
planar or spatial process, but in this paper this further
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structure is ignored. The objective is to compare the
efficiencies of the two estimators L and p_ of p, where
LL is the proportion of a transect of length L occupied by
X, and P is the proportion of a grid of n points at

spacing A" occupied by X.

As shown, for example, in Stoyan (1979)

1
Var(LL) = f 2 (1-x) C(Ix)dx (1)
o

and by expressing Pp as the mean of n correlated random
indicator variables,

-1
I (1 -1i/n) C(HD) (2)
i=1

-1 -1 n
Var(PP) =n C(0) + 2n

The formulae (1) and (2) are only useful in practice if the
form of the covariance function is known and this is not
usually the case.

When nA =L, (2) is just a trapezoidal approximation
to the integral in (1), whose associated error depends upon
both the non-linearity of the integrand and the class width
n-1l. For a quadratic integrand f(x), it is easy to show
that the error involved in the trapezoidal approximation
over [0,1] is

(£'(1) - £'(0))/12n2 (3)

Furthermore, the derivative of (l1-x) C(Lx) is (l-x) C'(Lx) -
C(Lx), which assumes values LC'(0) - C(0) and -C(L) for x =
0 and 1, respectively. Therefore, for sufficiently smooth
C, it may be assumed on the basis of (1), (2) and (3) that

Var(PP) - Var(L (-LC'(0) + C(0) - C(L))/6n2 + o(n_2)

L)

A% (=C'(0) + (C(0) = C(L))/L)/6L + o(4%)
(4)

1}
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As shown in Serra (1982), -C'(0) =1p P, where p_  is the

expected number of boundary points per unit length. Also,
if it is assumed that the range a of the process defined by

a=2 fo C(x) dx/pq (5)
is finite, it is also shown in Serra (1982) that
Var(LL) = apqL"l + o(L'l) (6)

In practice, a is a measure of the distance at which the
covariance becomes negligible and is known at least to an
order of magnitude.

For large L and small A, (4) and (6) can be used to
obtain the approximation

Var(P ) - Var(L.) = A2 P /12 a
ar ( P) ar( L) L/ Pq (7)
\Y L
ar( L)
From the conditional variance formula Var(XIY) = Var(X) -

Var(E(X|Y)) and noting that E(Pp|Ly) = Ly, it is valid to
write .

Var(Pp) - Var(Ly) = Var(Pp|LL),
where the right-hand side is to be interpreted as the
additional squared error due to grid sampling. This formula

is well known (Matheron, 1971, p.68; Journel, 1978,
P.67). The relative error

1
e, = (Var(PplLL)/Var(LL)) /2

may be approximated by

gA = (PL/12 apq) l/zA (8)
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Equation (8) gives the relative increase in error due to
grid sampling, which is approximately linear in A for
small A.

By (6), the right-hand side of (7) may equally well be
interpreted as the approximate relative increase in length
of grid required to achieve the same variance as a lineal
estimator of length L or, in other words, the approximate
number of grid points required is given by the formula

~ 2
nA (1 +A PL/12 apq)L/A (9)

It can be concluded from (7) that point count

estimation is most effective when Pr/2 is small and pq is
large. Clearly, this occurs when the covariance function
tends slowly towards zero and p is not too close to 0 or 1.

RESULTS

To illustrate the theory in the preceding section, let
us consider the case of an exponential covariance function
(see, for example, Pielou, 1964; Matheron, 1971).

C(x) = pq exp(- Xx)

with P; = 2pqX and a = a1, Evaluation of (1) and (2)
yields

var(L ) = 2pq (L)~ {1 - (a7 (1 - exp(- AL))}  (10)
and

Var(PP) = 2pq {n (1 - exp(—AA))}_l{ o (1 + exp(=2b)) -

[0 (1 - exp(-28))]1  exp (=A8) (1 - exp(=Int)) | (11)
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The exact relative increase in error e for L = nA
depends only wupon the two scale invar%ant quantities
AA and AL, while the approximate relative error increase
e may be written as )A/V12 . The approximation may be
confirmed analytically, and is illustrated in the following
table.

TABLE 1. The first row gives the approximate relative
percentage increases in error for grid sampling which are
compared with the exact increases for an exponential
covariance

AL .2 A 1 2
100 EA 5.77 11.55 28.87 57.74
100 e AL
A 20 6.01 12.00 29.78 58.10
40 5.89 11.76 29.20 57.01
100 5.82 11.62  28.86 56.37
200 5.80 11.58 28.76 56.18

EXAMPLE

Estimates of areal cover and size distribution are
required for incorporation into a cell model of fire spread
behaviour for areas of spinifex grassland in the Uluru
National Park in Central Australia (Saxon et al., 1982).
Fortunately, the spinifex plant is quite circular in shape
so that an Abel equation (Davy and Jakeman, in preparation)
relates lineal intercept or grid point distributions to the
distribution of the spinifex diameters. Depending upon the
fire history of an area and hence upon the age of the
spinifex population, the average diameter of a plant can
vary from a fraction of a metre up to 3 metres. However,
for an area to be fire prone, the average diameter must be
greater than half a metre. It is important, therefore, when
taking transects for size distribution determination, that
uniform counts be taken at least every metre and ly and V4
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metre intervals are obviously more desirable. Since the
data requirements for areal cover estimation are less
stringent than those for size distribution, the transect
information obtained for sizes can also be wused for

estimation of areal cover. Therefore, calculation of
e, and n, can be restricted to A= 0.25, 0.5 and 1.0
here.

Because it is expected that the model of fire behaviour
needs to be accurate to about 10 per cent, it is necessary
to impose a standard deviation on the areal cover estimation
of around 5 per cent. Since p tends to vary around 0.5,
such a standard deviation is 0.025. If the exponential
covariance function is used to check the results given by
(8) and (9), a value of P and hence ) 1is required in
addition to p. L

\

Consider, for example, recent samples taken through a
25 year old community of spinifex plants. For this area, Py,
= 0.58 boundaries per unit length and Pp = 0.53. Using p =
0.53, equations (10), (11), (8) and (9) can be applied to
estimate: the standard error of such an areal cover for the
lineal interception method against increasing transect
length; the increase in error when a grid count (of 1/ ,
Yy and Im spacings) is used, and the number of point counts
required to achieve the same variance as the 1lineal
interception method.

Table 2 reports the results for L = 100, 200, 400, 700
and 1,000m. It shows that a transect of 700m is required to
achieve a standard deviation on areal cover of around 57
(.025/.53 x 100) using lineal interception. However, with
n; = 780, only an extra 80 metres of point counting at Im
intervals is required to obtain a 5% error on the point
count estimate.

It is clear that as the grid spacing decreases, so does
the length of point count required. For A =l4m, only an
extra 5m (2820/4 - 700) is necessary. However, the workload
at A =1y, is relatively high when it is considered that
almost 4 times (2820/780) as many wheel point counts are
needed compared to using A= 1. Therefore, it is
recommended that the largest possible grid spacing be used
which still constrains the size distribution data to remain
accurate also to within a 5% standard error.
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TABLE 2. For various transect lengths L, grid spacings A
= 1,0, 0.5 and 0.25, Py, = 0.58 and p = 0.53, the table gives
with respect to lineal interception the relative increase in
error for grid sampling using the approximate formula (8),
the exact increase for the exponential covariance function
and the approximate number of grid points required to
achieve the same variance using (9)

L (metres) 100 200 400 700 1000
/Var(LL) .065 . 046 .033 L025 L021
e .335 L334 .333 .333 .333
31 .336
ﬁl 112 223 446 7805 1113
e . 169 . 168 . 168 . 168 . 168
~0.5
&S .168
ﬁO.S 206 412 823 1440 2057
e . 085 . 084 . 084 . 084 . 084
ag-gg .084
a0 403 806 1612 2820 4029

0.25
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