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ABSTRACT

This paper is a resumption of the paper entitled :
"On the use of the geodesic metric in image analysis" which
was presented by Ch. Lantuéjoul and S. Beucher at the 5th
1.S.S. Congress. We recall several features that can be in-
trinsically defined on 2-D Euclidean subsets (Tength, geode-
sic radius). These features satisfy isoperimetric inequali-
ties in the case where the subsets under study are simply
connected. As an application, a metallographic case study is
presented. .

1. GEODESIC DISTANCE FUNCTION

1.1 Existence and Unicity

Let X be a subset of the 2-D Euclidean space in R?,
and let x and y be two points of X. Let dX(x,y) denote the
infimum of the lengths of the arcs in X between x and y if
such arcs do exist, and + © if not. The function dy satisfies
the 3 axioms of a distance function

0%

de(x,y) 20 and =0 iff x=y
dX(X’y) = dX(Y,X)
dX(x,z) < dX(x,y) + dX(y’z)

but may take infinite values.
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Suppose now that dy(x,y) < + ®. If X is closed, there
is a (simple) arc in X 11nk1ng x and y, with its 1ength equal
to dx(x,y). Moreover, such an arc is unique if X is simply
connected (1). We term it geodesic arc between x and y, and
denote it ny.

1.2 Geodesic Distance Function

From now on, we assume X to be a non-empty, closed
subset of R?, which is connected, simply connected and com-
pact for dy. Then dy is a distance function called "geodesic
distance function”.

Let z € X. It can be shown that the function t+dX(z t)
is geodesically convex (2). More precisely, if t €:P such
that dy(x,t) = a-dy(x,y) (0 < a < 1), then :

dy(z,t) £ (1-a) dy(z,x) +a dy (z,y) (1
dX(z,t) < max [dX(z,x), dX(z,y)] (2)
X

2. MORPHOLOGICAL APPLICATIONS

. 2.1 Propagation Function

Imagine that X is a soundproof room. At time 0, a beep
is emitted from a point x in X. Sound propagates in all direc-
tions within X at a constant speed (taken to be equal to 1).
We measure the time T(x) at which all the points in X have
received the beep :




ACTA STEREOL 1984; 3/2 171

T(x) = max dX(X,y)
yeX

The function T is termed "propagation function". Clear-
ly, T is continuous

TG = T | £ dy(x,y)

T is also geodesically convex (2): if t C:FX such that
dy(x,t) = a dp(x,y) (0 < a < 1), then Y

IA

T(t) £ (1-a) T(x) + aT(y) a"

T(t) < max[T(x), T(y)] (2")

2.2 Geodesic Features

Since X is compact, T reaches its extremal values. We

write D(X) = max T(x) = max dX(x,y). D(X) is called geode-
' x€eX x,yeX

stic diameter or length of X. Using the convexity inequality
(2'), it can be shown that T reaches its minimal value at a
unique point c. This point is called geodesic center, and the
corresponding value T(c) geodesic radius. This value is deno-
ted R(X).

2.3 An Isoperimetric Inequality

The geodesic radius and the geodesic diameter satisfy
the following inequalities (3)

RX) V3 £DX) £ 2 R(X)

and these inequalities are the best (e.g. an equilateral tri-
angle and a segment). In the specific case where X is convex,
we obtain Jung's inequality (4).
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Remark : If X is not simply connected, the geodesic diameter
and the geodesic radius can be defined exactly as above, but
the inequality R(X) V3 £ D(X) does not necessarily hold. Fur-
thermore, a center is not necessarily uniquely defined (e.g.
if X is a circumference, all the points in X are a center and
RX) = D(X)).

3. A CASE STUDY

The following study has been supported by the '"Centre
de Recherches de Pont-a-Mousson'. It is well known that the
lack of malleability of grey cast-iron is related to the pre-
sence of long, narrow graphite particles which tend to favour
crack propagation. The question is: how can the tendency of
a particle to be elongated be quantified?

3.1 The Shape Factor

Let X be a graphite particle. A first method consists
in computing the so-called '"shape factor" :

P2 (X)
4 A(X)

$(X) =

where A(X) and P(X) respectively stand for the surface area
and the perimeter of X. It turns out that this method provi-
des rather poor results. Indeed, arbitrarily shaped particles

EI _
can take the same shape factor (e.g. | and [T T 111,

and conversely two particles with the same shape can take

. B ARV,
entirely different shape factors (e.g.(::::::> and £:~ ).

3.2 A Length Index

We propose to define a length index as follows :

where the length D(X) is used instead of the perimeter P(X).
The more elongated the particle, the greater its length index.
0 (X) is minimal and equal to 1 if and only if X is a disk.




ACTA STEREOL 1984; 3/2 173

More generally, the length index satisfies the two fol-
lowing inequations :

X UY) € /a® + /o) when XNY #¢

max[u(X), a(Yﬂ

IN

IN

oX @ Y)

where X ® Y stands for the Minkowski's sum of X and Y, i.e.
XY = {x+y|XCX, y € Y}.

The first experiments have shown that the length index
seems to be more reliable than the shape factor. This probably
stems from the fact that 0(X) is hardly sensitive to the fluc-
tuations of the contour of X. Two photographs have been taken
from the study :

(1) original image with the black graphite particles

(2) length index of the particles: the more elongated they
are, the brighter they are when displayed.

D) (2)

An algorithm to get the propagation function and its
subsequent features has been presented in (5).
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