ACTA STEREOL 1996; 15/1: 9-14
ORIGINAL SCIENTIFIC PAPER

UNFOLDING THE BIVARIATE SIZE-ORIENTATION DISTRIBUTION

Viktor Benes, Arun M. Gokhale!, Margarita Slamov4?

Dept. of Mathematics, Czech Technical University, Karlovo ndm. 13,

12135 Prague, Czech Republic

!School of Material Science and Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332-0245, USA

Tnnovation and Technological Centre VUK, Panenské BfeZany,

25070 Odolena Voda, Czech Republic

ABSTRACT

A new stereological problem, unfolding the bivariate size-orientation distribution of platelike
particles from vertical uniform random sections, is solved. While the theoretical double integral
equation has been derived by Gokhale(1995), here we proceed by discretization. The input
histogram of planar size-orientation parameters is transformed to the desired histogram of spatial
quantities. The discretized equation is solved by means of an EM-algorithm.

Practical application when investigating the damage initiation process in metal matrix compos-
ites follows. The data measured by an image analyser are transformed and some important
parameters are derived from the bivariate distribution.
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INTRODUCTION

Modern stereological sampling techniques in biology since 1984 make use of three-dimensional
probes. In material science up to exceptional cases, preparation of such probes is connected with
a tremendous experimental effort. Therefore still classical methods based on an information
from a single section plane are of interest. When estimating the geometry of phase particles the
assumption of shape is then necessary. This is in practice often only an approximation, however,
usually statistical methods are robust with respect to slight deviations of this assumption.

The unfolding problems in stereology connect geometrical parameters of random particles with
those of planar particle sections. For specific shapes of particles, integral equations between
corresponding spatial and planar probability distributions are known. When the geometry of
particles is described by two parameters, equations for bivariate distributions are of interest.
The problem of isotropic random spheroidal particles was solved by Cruz-Orive(1976), express-
ing the size-shape distribution of spheroids by means of the size-shape distribution of ellipses in
the section plane. For polyhedral particles further methods (Ohser and Miicklich, 1995) were ob-
tained by concerning the size-shape and size-number distribution, number denoting the number
of edges. Even if sections of such particles are irregular and analytical equation is not available,
an ingenious method using simulation of sections was suggested.

Here we solve a new type of bivariate unfolding problem of size and orientation for platelike
particles with circular shape, where the spatial orientation is represented by colatitude from
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a given axis. The method can be employed to anisotropic structures with dependent size and
orientation of particles. The analytical solution derived by Gokhale(1995) was based on the
planar information based on vertical uniform random sections. We observe that in this case
sizes and orientations can be unfold in two subsequent steps and a discrete solution is presented
which yields the desired bivariate histogram of spatial parameters.

The given axis (which is not called vertical in the following) corresponds in material science to
situations where e.g. the specimen is deformed in one direction. When the structure presents
rotational symmetry around this axis, than unfolding can be performed from a single section.
An application to the study of damage initiation process in AlSi composites follows.

THEORETICAL SOLUTION

Let thin plates have random diameter d and orientation (6,¢), 6 being the colatitude and
¢ € (0, 27) the longitude. We denote f(d,0) = % 027' fi(d, 0, ¢)d¢ the joint probability density
function of the diameter d and angle 6 between the plate normal and the fixed symmetry
axis. Let a symmetry section plane be such that contains the symmetry axis. In a random
symmetry section plane particle sections are observed of length y and orientation angle o to the
symmetry axis. Let g(y,a) be the corresponding probability density function. Further Ny, N4
are the mean number of particles per unit volume, particle sections per unit area, respectively.
Gokhale(1995) derived an integral equation connecting f and g

4 foo (/2 s@sin 6 f(d,0)dd df
Nag(y, @) = NV—/ / y cos dsin 0/(d, ) 1)
Tty Jaf2-asin a\/(d2 — y?)(tan? 6 — cot? a )

for y > 0, @ > § — 6. It is a double Abelian equation the theoretical solution of which with
respect to f is available, see Gokhale(1995).

Our aim is to develop and demonstrate a practical solution in the situation when the input
is a bivariate frequency histogram of lengths and orientations measured in the section plane
either manually or by an image analyser. In this case, the use of the analytical solution is not
comfortable since it requires fitting of the bivariate density followed by numerical differentiation
and integration. Therefore we develop a traditional approach of discretization of the integral
equation (1) and evaluation of the bivariate histogram of spatial parameters. First denote

4 cos @ sin 0
M0,a)=— 2
(8,2) 7 sin® av/tan? 0 — cot? a @

and rewrite (1) as

Nag(y,a) = N"/y W/ M(0,)f(d,0)d0 dd. 3)

We observe that (1) may be solved in two steps:
a) for each fixed a solve the ”outer” problem

®  h(d,a) —
——2-dd, h= .

b) solve the ”inner” problem

(4)

h(d, ) = /ﬁ :2: M(6, ) f(d, 0)d0 (5)

w.r.t. f for each fixed d > 0.
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In each step the discretization is applied to get finally the desired bivariate histogram of spatial
size and orientation. We start with a) which is in fact the well-known Wicksell(1925) corpuscule
problem. We briefly remind its discretization using the idea of Ohser, Miicklich(1995).
It starts from the integral equation (4) rewritten in terms of distribution fuctions H, G corre-
sponding to h and g, we omitt the variable a:

(ee)

Na(1=Gl)) = Ny [ pld,y)dr(d), (©)
where the kernel function p(dyy) = Vd —y?, d >y, pd, y) = 0 else. In the discretization we
simplify the situation assuming that the particle diameter is a discrete random variable with
values d; = @', i € Z, a > 1 fixed. Then Ny (i) denotes the mean number of particles of
size d; per unit volume. Next we classify the section lengths by putting y; = @/ and denoting
N4(j) the mean number of sections with length y between y;_; < y < y; per unit area of
section plane. Let jo € Z corresponds to the class with smallest observed section length and
Na(j) = Na(G(y;) - G(y;j-1)), § € Z. Then putting subsequently y; and y;_; into (6) and
subtracting these two equations we obtain the desired discrete version of (6):

[oe]
Na(G) = pi;Nv(i), j € Z, (7)
=
where p;; = p(d;, yj-1) — p(di, y;). In fact only a vector of coefficients is desired since they have

form p;; = a's;_;, where s; = V1 —a26-1) — \/T — 4%, The solution of (7) is obtained by
iterative EM-algorithm (Silvermann et al., 1990) which here takes a special form

NN () L Na(9)ss-i

2(jo—i—1) (m) ' (8)
V1= =1 2 5 N Dy

Here m is the index of iteration, we put N‘(,O)(‘i) = %ﬂ, where h is a rough estimator of the
mean particle diameter.

Further we derive the discretization of the inner problem (5) including orientations. Omitting the
size variable d we look for the relation between distribution functions H(a), F(8) corresponding
to densities h, f in (5). This is obtained by integration of formula (5):

M) =

m/2  ra cos dF'(0)dt
He=c [ [ ol ©)
n/2—a Jx/2-0 sin” v/ tan? § — cot? ¢

where C' is a normalizing constant and dF'(0) = sin6f(0)df. This equation is not yet ready
for discretization, but using the substitution cotfcot? = sin ¢, le. dop = m and

\/1—sin?@cos? ¢ = csﬁif, we get a form
m/2 /2
H(a)= C’/ / V1 = cos? psin® 0dpd (), (10)
7/2—a Jarccos D(a,8)

Vsin? a — cos? @

sin f sin «
The kernel function p(6,a) of (10) (i.e. H(a) = C [p(0,a)dF(§)) is in fact the elliptic integral
of the second kind denoted E(B,k) = foﬁ \/1— k2sin? ¢d, since

arcsin D(a,8)
(6, a) = / V1= sin® ¢sin? 0dp = E(arcsin D(a, 6),sin 9).
0

where

D(a,8) =
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Next we define discrete values 8;, a;, 7,7 = 1,...,n and denote H(j) = H(o;)—H(j-1), F(i)=
F(6;) — F(6;_1). Then the discretized equation (10) is

H(j):zpffp(i), J=1,.,n, (11)
where the coefficients
pij = p(0i, o) — p(fi, aj1) (12)

for j > n—4, pij =0 else. Numerical solution of this system by EM-algorithm is given by an
iteration step formula:

plmt1) _ ™ H()pi; (13)
1 G G o™y

where ¢; = ); pi;. As an initial iteration it is possible to put E(O) = Ho 4= Lisnst

Natural choices of discrete values a;,8; may lead to some difficulties because of the form of
kernel function. Therefore we suggest the following. Consider the set of measured angles a. The
subsample characterized by a = 0 has to be tackled in a special way. In fact o = 0 determines
6 = /2 so for this subsample only the outer problem (4) has to be solved. In the remaining data
we may assume that all measured angles o are greater than zero. We denote oumin the minimal
observed a, put Omax = T/2 — Qmin, & = Qﬂ;ﬂ, 0; =i, a; = amin+ (I — DA, i=1,..,n.

The normalizing constant C in (9) is known, but need not be evaluated. From (8) we in fact
obtain by summing the estimator of Ny, then (13) is executed with input Ny (z) from (8) instead
of H;. Finally, the solution F; from (13) is normalized and multiplied by Ny to get the desired
estimator.

APPLICATION

The developed method was used for the unfolding of particle size and orientation in two series
of specimens. A chill cast Al-1 wt%Si composite has been heat treated in two different ways in
order to obtain precipitation of platelike Si particles. By dissolution annealing at 540°C for 6
hours and slow cooling (18°C/hour) to 20°C the specimen denoted by 2 has been obtained. By
dissolution annealing at 540°C for 6 hours, annealing at 440°C for 12 hours and slow cooling
(18°C/hour) to 20°C the specimen denoted by 3 has been obtained.
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Fig.1: Micrograph of polished metallographic sample, specimen 2.

Uniaxial tensile tests using cylindrical specimens of diameter 8 mm and length 60 mm were
carried out. Brittle silicon particles embedded in ductile aluminium matrix do not deform
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plastically and particle cracking has been expected to occur during deformation. In order to
study the damage of Si particles metallographic samples were prepared from specimens deformed
up to fracture. The corresponding strain of specimen 2, 3 was 22.7%, 27.7%, respectively. The
deformation axis is here the symmetry axis. The samples (symmetry planes) were cut uniformly
randomly parallel to this axis. Therefore the sampling assumptions of the presented method are
fulfilled. The angle from the symmetry axis (colatitude) is of interest only. The micrograph of
a sample cut from specimen 2 is in Fig. 1, the deformation axis is horizontal.

Quantitative metallographic analysis has been performed by image analysis technique using
IBAS-Kontron analyser connected to light microscope. Two sets of data were obtained from
each sample: a) the set of data for all particle sections observed (denoted iL, i=2,3); b) the set
of data for particle sections with observed cracks (denoted iLC, i=2,3). The size of Si particle
section was assessed by the parameter DMAX, representing the maximum length of the section.
The orientation of the section was characterized by ANGLEDMAX, the planar angle o from
the deformation axis. Since IBAS software allows the measurement of discrete angles in 32
directions only, we obtain a subsample of angles o = 0, at least among all particles. For this
subsample we have directly § = 7 as discussed in the previous section.

Ny [mm”)

Ny [mm”]

Ny [mm™)
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The total area included in the analyses for the specimen 2, 3 was 3.72 mm?, 1.86 mm?, re-
spectively. The evaluation of bivariate size-orientation distribution according to the developed
methods leads to histograms presented in Fig. 2. Due to small sample size only m = 8 classes
were used for discretization, the ninth orientation class corresponds to 6 = 7. It should be noted
that not all cracks are observed in the section plane. Ny(%,j) for cracked particles should be
corrected in histograms (c), (d) in Fig.2 by Ny = 2Ny, where Ny is the basic estimator obtained
by the unfolding. The correction factor 2 is based on the assumption that there is at most one
crack in a particle, otherwise it could be smaller in practice.

The total number n of measured particle sections is in Table 1 together with estimated ex-
pectations and variances Ed [pm], E@ [rad), vard [um?], var@ [rad?] of particle diameter
d, orientation 6, respectively. Clearly (see Ed values) larger particles initiate more frequently
cracks. The dependence between spatial size and orientation of particles can be investigated
by the correlation coefficient pqgg. Larger positive values of g4 for samples iLC in Table 1 are
caused by the fact that bigger particles tend to be cracked with increasing 6, i.e. being nearly
parallel to the deformation axis.

n Ed Eo vard | varf 0d¢ An
2L 3335 | 4.825 | 1.015 | 21.42 | 0.124 | 0.087
2LC | 454 | 12.36 | 0.945 | 107.94 | 0.161 | 0.688 | 1.257
3L 3018 | 5.074 | 1.043 | 15.51 | 0.124 | 0.008
3LC | 397 | 12.31 | 1.080 | 59.87 | 0.169 | 0.352 | 1.614

Table 1: Spatial parameters of the structure estimated from measured data.

The statistics A, = /nmaz;j<m|F(0;) — Fo(0;)|, where F, F, are marginal distribution functions
of 0 corresponding to samples iL, iLC, is another measure of dependence of particle damage
on orientation. Approximately, comparing A, in Table 1 with critical value A}, = 1.52 of the
Kolmogorov-Smirnov goodness-of-fit test (on significance level 0.05) we have got an evidence of
the dependence from 3LC only. Larger samples are desired for a more precise analysis.
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