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ABSTRACT

A diagnosis in pathology is a classification based upon multiple parameters. Therefore, an
important challenge in morphometry is to determine what the most effective classification
procedure is for a given setting; in practice, this applies to a narrow differential diagnosis
between predetermined choices of similar morphology. To resolve this problem, a number of
approaches have been recommended, both statistical and non-statistical. Among the statistical
classificatory procedures are discriminant analysis, logistic regression, k-nearest neighbor
analysis, and recursive partitioning. Among the non-statistical procedures, the community has
expressed a preference for artificial neural networks. Experience in our laboratory using neural
networks in the diagnosis of histology and cytology specimens suggests the tentative
conclusion that in comparison with other classificatory algorithms, neural networks are the
method of choice.
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INTRODUCTION

Diagnosis is classification. In pathology, the clinical applicability of image analysis is
dependent on prescribing a specific method of classifying new cases based on multiple
parameters. Each case is represented by a vector of parameters; a sample of these vectors with
known diagnoses, referred to as a training set, is used to determine a general method for
assigning arbitrary parameter vectors to diagnostic groups. Although most morphometric
classificatory studies to date have employed stepwise parameter selection and discriminant
analysis to classify cases, there is no reason to assume that they are the most effective of the
numerous methods which exist. The problem of choice and optimization of classification
methods is a crucial one, yet a review of the literature shows that this issue has rarely been
addressed and never been the subject of systematic study. Mathematically, the problem can be
framed in terms of how to best partition a multidimensional parameter space, where “best” can
be understood in terms of various measures of diagnostic effectiveness, such as accuracy,
sensitivity, specificity, and false negative rate.

It is important to note that the classifications we are dealing with are between very
similar diagnostic groups, such as breast epithelial cell lesions, and not among broad categories
such as cancer. The role of computers in diagnosis in the foreseeable future will be to assist
with objective classification among narrow differentiations, not to replace physicians. While a
cytopathologist has no trouble identifying breast tissue and hyperplastic breast epithelial cells
within that tissue, he may find it difficult to reproducibly distinguish between mild and
moderate hyperplasia. Moreover, as stressed by Rosai (1991), one cytologist’s mild
hyperplasia is the next one’s moderate hyperplasia. Image analysis and classificatory
methodology enable us to objectify this portion of the diagnostic process. This consultative role
of computers in medicine is discussed with great insight and lucidity by Blois (1980). As
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illustrated in Figure 1, he describes the cognitive span required during diagnosis as a series of
judgments, each of which narrows the possibilities for diagnosis. While at the beginning of
this diagnostic process (Point A) the “totality of the world must be confronted,” the role of
computers is at the terminal stage represented by point B. Here, the “task domain has been
structured through previous human effort, an abstraction is available, and little common-sense
knowledge may be required.”

>
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Fig. 1. The Cognitive Span Required during Diagnosis. Figure drawn after Blois (1980).

The classification problem is really a twofold one: 1) how to best select parameters, and
2) how to best select and optimize a classification algorithm.

SELECTION OF PARAMETERS

Parameters are known alternatively, depending on the context, as features, descriptors, inputs,
variables, or covariates. They characterize properties of tissue deriving from morphometric or
stereologic methods; in pathology these typically include measures of nuclear profile sizes and
size distributions, chromatin texture, tissue architecture, etc. Besides from the parameter
selection incorporated into some classification algorithms, numerous stand-alone methods are
employed. These include both univariate approaches such as ANOVA and its nonparametric
analog the Kruskal-Wallis test, Genchi-Mori ambiguity, area under an ROC curve (Bartels,
1979), and the Fisher ratio (de Meester et al., 1991), and multivariate methods, such as factor
analysis and the popular stepwise procedure. While parameter selection merits treatment in its
own right, the focus of the discussion here will be on classification algorithm selection and
optimization. We shall treat, in order, types of classifiers, the details of some important
algorithms, comparisons between classification methods, and overtraining/overfitting.

TYPES OF CLASSIFIERS

Classifiers can be grouped as supervised or unsupervised, statistical or non-statistical, and
parametric or nonparametric. In supervised learning, we know the “state of nature” (e.g.,
normal, adenoma, carcinoma) for each sample, while in unsupervised learning we don’t (Duda
and Hart, 1973). Unsupervised classifiers such as clustering methods, which are not generally
used in morphometry, use the underlying structure of the data to assign group numbers to
individual cases. The groups, or clusters, which are formed are not defined a priori but rather
are suggested by the data, although they can be compared to, and identified with, states of
nature (SAS Institute, 1989). Numerous clustering methods exist. They vary in the nature of
the clusters, which may be disjoint, hierarchical, overlapping, or fuzzy. Most classifiers are
statistical, but some use alternative methods, e.g., neural networks and rule-based expert
systems. The distinction between statistical and non-statistical classifiers is an artificial one; it is
easily seen that the statistical method CART effectively generates a rule-based expert system.
Statistical classifiers assuming a normal distribution of covariates are called parametric. While
they are generally robust, non-normality may require a transformation or rank ordering of
covariates. Often, a simple logarithmic tranform will yield covariates with a Gaussian
distribution. Properties of a number of popular classifiers are summarized in Table 1, and we
discuss the rudiments of a few of these approaches below.
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Table 1. Properties of Some Classification Methods.

[ Classifier Supervised? Statistical? Parametric? j

Artificial Neural Network (ANN) _ Yes No No
Bayesian Belief Network Yes Yes —

CART (Recursive Partitioning) Yes Yes No
Cluster Analysis No Yes No
Discriminant Analysis Yes Yes Yes
k-Nearest Neighbor Yes Yes No
Logistic Regression Yes Yes No
Rule-based Expert System (LISP) Yes No No

Discriminant Analysis
Discriminant analysis is a parametric classification method and as such is most appropriate
when covariates have approximately normal within-class distributions. Nevertheless it is robust
and may still serve as an effective classifier in the absence of normality (normality can be
determined with the Shapiro-Wilk W test). The basic approach is to produce a mathematical
rule, called a discriminant function, that determines the posterior probability that an unknown
belongs (o a particular group. Owing to the nature of the resultant discriminant function, the
method is called linear discriminant analysis if we assume equal within-group covariance
matrices, and quadratic discriminant analysis if we assume unequal within-group covariance
matrices. Diagnosis can be associated with the group of highest posterior probability. The
procedure for computing posterior probabilities is given as follows (SAS Institute, 1989):

The generalized squared distance from an unknown parameter vector x to group i is
given by

D2(x) = (x - m;)’ Vil (x - m;) + g1(i) + ga(i)

where
Di is the prior probability of membership in group i,
m; is the vector containing the variable means in group i,
Vi is the covariance matrix within group / if we assume unequal within-

group covariance matrices, or the pooled covariance matrix if we
assume equal within-group covariance matrices,
81(i) = In 1 V;1 if the within-group covariance matrices are used, or

81(i)=0 if the pooled covariance matrix is used,
82(i) = -2 In p; if the prior probabilities are not all equal, or
82(i)=0 if the prior probabilities are all equal.

Letting n denote the number of groups, the posterior probability of unknown x belonging to
group i is defined as

p(ilx) = exp (-0.5 D(x)) | Yj=12....n exp (-0.5 DA(x)) .

Logistic Regression

Logistic regression (Hosmer and Lemeshow, 1989) is a nonparametric statistical approach to
classification. We want to discriminate among n+1 diagnostic categories numbered 0, ..., n
where category 0 is designated as the reference category. Let y be the outcome variable, taking
the value of the diagnostic category, and let x be the m+1 element vector of covariates, where
xg = 1 is constant and x; represents the ith covariate for i = I, 2,..., m. Define the n logit
functions as

fi(x)

In[Ply=ilx)/P(y=01Ix)]
= PBio +Bir x1 + Piz Xa + ... + i Xy

= xT B
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fori = I, 2,..., n. Letting fy(x) = 0, we then have that the conditional probability for an
outcome given a covariate vector is

p(y=ilx)=exp (fi(x)) ] Xj=o,.1,...n exp (fi(¥)). @

To compute maximum likelihood estimates of the §;; we must set the partial derivatives
of the log-likelihood function equal to zero and solve the resultant equations, typically by the
Newton-Raphson method. Estimates of the information matrix and of its inverse, the
covariance matrix, are similarly determined by computing the second partial derivatives of the
log-likelihood function. These, in turn, are used to determine the standard errors of the
estimates. To test the null hypothesis that a component of f8 is zero, and thereby determine if a
variable contributes to the model, we can use the likelihood ratio test, Wald’s test, or the score
test. The score test is the least popular of these methods. Of the other two, the likelihood ratio
test is regarded as the better method; both Hauck and Donner (1977) and Jennings (1986) have
demonstrated that Wald’s test behaves aberrantly. All of these calculations are performed by
commercial packages such as SYSTAT. Having determined MLEs of the f3;; from the training
set, we can now use them to assign posterior probabilities to a new case by applying Eq. 1.
Like in discriminant analysis, we can assign a diagnosis to a new case by choosing the outcome
with the greatest posterior probability.

k-Nearest Neighbor Analysis

Another nonparametric classificatory algorithm is based on a case’s k nearest neighbors in
parameter space. Given an unknown case, we identify the k points (e.g., 10) nearest to it in
parameter space and determine to which diagnostic category they belong (Unger et al., 1993).
Nearness may be in terms of Euclidean or Mahalanobis distance. If all k nearest neighbors
belong to the same group, then that is the classification for the unknown. If the neighbors
belong to different groups, then posterior probabilities are computed for membership in each of
the groups. Let n be the number of diagnostic groups, p; (i = 1, 2, ..., n) be the prior
probabilities of membership in each group, and f; (i = 1, 2, ..., n) be the number of k-nearest
neighbors of the unknown case belonging to each group, satisfying Y f; = k. Then the
posterior probability p(i | x) that the unknown belongs to group i is given by

pilx)=fipil XZi=1.2,.nJiPj -
A diagnosis can be associated with the group of maximal posterior probability.

Recursive Partitioning with Classification and Regression Trees (CART)

A third nonparametric approach to classification is recursive partitioning, generally associated
with the Classification and Regression Trees (CART) method of Breiman and Friedman
(Breiman et al., 1993). Recursive partitioning is based on the process of binary stratification,
done by analyzing each parameter to find its optimal cutpoint, which best separates patients into
diagnostic groups (Lacher, 1991). Cutpoint determination may be achieved by a number of
splitting criteria (Segal, 1988). The test maximizing classification accuracy is chosen as the first
partition, and the binary stratification is repeated on each half of the partitioned parameter space.
The recursive partitions can be described by a tree of decision rules.

Unconstrained partitioning will lead to a tree with as many terminal nodes as cases,
decreasing the generalizability of the classifier. For this reason, the decision tree is “pruned,”
removing non-informative nodes. Here too there are a number of methods that can be used,
such as the cross-validation method. Thus, a CART classifier is characterized by its splitting
and pruning criteria. Alternative classifiers can be generated by varying the cost associated with
an incorrect diagnosis, expressed in terms of the misclassification cost ratio.

CART’s counterpart and competitor is the Fast Algorithm for Classification Trees
(FACT) of Loh and Vanichsetakul (1988). FACT attempts to combine the advantages of CART
with linear discriminant analysis; this parametric method places more emphasis on linear
combination and non-binary splits, does not use cross-validation but rather employs a stop-
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splitting rule, and incorporates methods for dealing with missing values (Stewart and Stamm,
1991).  Despite the case made by FACT’s proponents, CART remains the standard for
recursive partitioning.

Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are a type of artificial intelligence (Lawrence, 1993; Dytch
and Wied, 1990; Deligdisch et al., 1995). They can generalize from a training set, making few
assumptions as to the underlying data structure. While several neural network designs have
been studied and employed for classification (Tourassi and Floyd, 1995; DaPonte and
Sherman, 1991), backpropagation networks remain the standard, and the focus of this section.
The fundamental unit of structure in artificial neural networks, like their biological counterparts,
is the neuron. A backpropagation ANN has its neurons arranged in a multilayered architecture,
with each neuron connected to the neurons in its adjacent layers. There is a layer of input
neurons, one or more layers of hidden neurons, and a layer of output neurons. A value is
associated with each neuron, and a weight with each connection. In addition, hidden and
output neurons have biases associated with them; these may be regarded as weights of special
neurons having constant values of one. The value of a hidden or output neuron is computed by
passing the biased weighted sum of values from the previous layer through a “transfer
function,” most typically a sigmoidal function. More formally, let n be the number of layers,
be the number of neurons in layer & (k = 1, 2,..., n), wi be the connection weight between the
ith neuron in layer & and the jth neuron in layer k-1 (i = 1,2,..,m; j = 1,2,..., npy;
k=2,3,..,n),and by and vj be the bias and value of the ith neuron in layer k, respectively
(i=1,2,..,n k=2,3,.,n). Then the values vix are determined from the formula

Vik = L1 (1 + exp(-2j=12,..m,, (Wiik * Vigk1) + bir))) .

The architecture of a typical backpropagation network for use in morphometry is
illustrated in Fig. 2. As is shown, input neurons represent morphometric parameters, while
output neurons code for the diagnosis. The values taken by output variables are generally
constrained to the interval [0, 1]; thus, e.g., a value near one for the “Malignant” neuron is
identified with a diagnosis of malignancy.

Hidden Neurons

Figure 2. Neural Network Architecture. Example of a backpropagation neural network with
four input neurons, six hidden neurons, and two output neurons.

The classificatory power of neural networks is contained in the weights and biases,
known together as the connection matrix (Astion and Wilding, 1992b). Determination of the
optimal connection matrix for a particular set of training facts is a computationally difficult
problem; for even very simple networks, the problem has been mathematically demonstrated to
be NP-complete (not computable in polynomial time) (Blum and Rivest, 1991). The approach
generally used in ANNSs is an adaptive one, in which the weights and biases are “learned” over
repeated iterations through the training set. The connection matrix is initially set at random, and
the values of hidden and output neurons are computed for a parameter vector. Output neuron
values are compared with their target values, e.g., (0,1) for malignancy in the example. If the
difference between the output value and its target value, known as the error factor, is less than a
specified training tolerance, the case represented by the parameter value is regarded to be
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correctly classified, and the next case is considered. If the error factor is too large, then the
connection matrix is modified using some learning rule, most typically the generalized delta rule
or a modification thereof. These learning rules reflect factors such as the transfer function,
neuron values, error factors, weights, and biases. Initially, output biases and connection
weights between output neurons and the last layer of hidden neurons are adjusted. These
changes are then backpropagated, one layer at a time, until the whole connection matrix has
been modified. Cycling through the training set continues until all cases are correctly classified
or, barring this, some other specified stopping point.

Using the final connection matrix, a new set of inputs can be used to predict output
values. Numerous factors are incorporated into the design of a neural network, and these may
affect its training and ability to generalize. Such factors include network topology, noise, order
of training facts, choice of transfer function, initial weights, range specification, learning rate,
training tolerance, testing tolerance, and the training set.

Other Methods

Besides the popular approaches discussed above, there exist numerous other classification
methods, several of which are described in Duda and Hart’s (1973) classic book. Bartels and
Thompson (Bartels et al., 1992) have championed the use of Bayesian Belief Networks as a
classifier for quantitative pathology. Rule-based expert systems, often developed in the
computer language LISP, have fallen out of favor for artificial intelligence applications. Other
methods include Parzen Windows, the Furthest-Neighbor Algorithm, and linear programming.

COMPARISON OF CLASSIFICATORY APPROACHES

It is difficult to know which classifier will perform best for a given data set. Each method has
its advantages and disadvantages. Neural networks probably make the least assumptions as to
the surfaces that divide parameter space. They provide a number of options for fine-tuning.
However, neural nets have been accused of being “black-box” classifiers, accurate but
uninterpretable. While the effect of individual weights in a neural network is certainly less
comprehensible than that of, for example, splits in CART, methods have been developed to
determine how a neural network uses information. Ravdin and Clark (1992) examined a trained
network by selectively inactivating its input units, both individually and in sets. They claim that
the effect of using only a single input neuron is analogous to evaluating its univariate
importance, while inactivating the neuron may determine its multivariate importance. By
including or omitting pairs of neurons, interactions between parameters can be analyzed.
Wilding et al. (1994) identify the most influential features in a jackknife analysis by individually
varying inputs by £10% of their range and determining the result on the output. These methods
may also be used for parameter selection. The role of hidden neurons may be studied using a
Hinton diagram (Qian and Sejnowski, 1988), which graphically represents connection weights.
Apologetics aside, a neural network is undeniably more difficult to interpret than a linear
discriminant function or CART tree. But this very complexity and nonlinearity is the source of
neural networks’ classificatory power.

Statistical approaches are more dependent on the validity of a model that is assumed.
Linear discriminant analysis and CART should perform well if the “true” separating surfaces are
roughly linear; whether this is a reasonable assumption for morphometric data is unclear.
Quadratic discriminant analysis can model more complex separating surfaces than its linear
counterpart, but it is more prone to overfitting of the training data (Hand, 1992). As
mentioned, both forms of discriminant analysis may suffer in the absence of normality.
Tronically, logistic regression may fail if categories are too well separated in space. Using a
data set in which each case had previously been correctly diagnosed using a jackknifed neural
network approach (Einstein et al., 1994), we attempted to make a classification using logistic
regression, but log-likelihood functions did not converge. Interestingly, we observed that
convergence may in fact be dependent on the reference group chosen. While some classifiers
interpolate diagnostic information for regions of parameter space where they have no training
points, logistic regression effectively refuses to venture a classification.

Breiman et al. (1993) suggest a number of advantages of their CART method. While a
number of these could apply to most classifiers, some are specific to recursive partitioning.




ACTA STEREOL 1996; 15/1 21

These include that it is invariant under monotone transformations of parameters, and that it is
very robust with respect to misclassified points and outliers. One feature of CART is that the
classification tree it yields bears a strong resemblance to clinical practice guidelines (Hadom et
al., 1992). For applications where we want readily explainable classification rules, this is
extremely beneficial. For applications where classification accuracy, regardless of complexity,
is most important, this may be an unnecessary simplification.

Table 2. Selected Studies Comparing Classification Methods

LMethods & Accuracies (%) Reference ]
NN(@©933> LDA (84.4) > QDA@®22) . . Ereretal, 1991 .

NN (47) > Bayes (45) Dawson et al., 1991

NN (100) = , LDA (100) . Unger et al,; 1995

*NN (77.7) > DT (76.5) > LDA (75.0) Palcic et al.,, 1992

LR (943) m LDA (94.3) . : : Stenkvist & Strande, 1989
NN (93,8, 82.2, 77.3) > WDD (93.5, 81.7, 77.2) Errington & Graham, 1993
CART 913)> LR@I> 0 ODA®B4S)> LDA@RLS Lacher, 1991 L
CART (833)> ~ NN(73.8)= ... LDA (73.8) Reibnegger et al., 1991
NN@0) > QDA (75) ' . _Astion & Wilding, 19922
NN (94.1)> LDA (85.7) > QDA (78.0) Erler et al., 1995

NN (80,70) > - LDA (64, 65) > QDA (69, 45) : Lamb & Niederberger, 1993
LR (72) > ) CART (68), other models ) ) __Hadorn et al., 1992

NN (89.9) > LR (88.4) Doig et al., 1993

NN (90.6) > kNN (81) > LDA (78.125) DaPonte & Sherman, 1991
Bayes (99,1) >  NN(©95.9) ’ Tourassi & Floyd, 1995
kNN (83) > NN (79) > MLM (73) Clarke et al., 1993

LR, LDA, CART (Not all accuracies given) Stewart & Stamm, 1991

NN = Neural Network. LDA = Linear Discriminant Analysis. QDA = Quadratic Discriminant Analysis.
Bayes = Bayesian Classifier. DT = Decision Tree. LR = Logistic Regression.

WDD = Weighted Density Distribution Classifier, the best previously reported chromosome classifier.
kNN = k-Nearest Neighbors Method. MLM = Maximum Likelihood Method.,

* But comparison differed for multi-stage classification: LDA (87.2) > NN (85.1) > DT (84.3).

Despite numerous papers using classificatory algorithms in a host of medical
applications, there have been remarkably few comparing their accuracies. Table 2 summarizes
some of this literature. We make no claims of comprehensiveness. The comparisons may not
all be fair, in the sense that in a single study one method may be more optimized than the
other(s). In some studies numerous classifications were compared and one representing each
classifier had to be chosen. Perhaps the truth is as Hand (1992) contends, that “careful and
sensitive use of any method will probably yield very similar results.” A few papers have been
omitted in which classifier comparison using different parameter sets may have biased the
results, accuracy was based primarily on the training set, or the emphasis was on survival
models or different classifiers than those above.

In diagnostic pathology, we are only aware of three papers that have employed both
neural networks and a statistical classificatory method (Dawson et al., 1991; Erler et al., 1991;
Unger et al., 1995); in all cases neural networks were equal or better. Classifier performance
should be expected to vary depending on the data structure, and therefore results from one
study may not be applicable to another. If it is possible to draw any conclusions, we would
make the tentative claim that neural networks tend to perform better than statistical classifiers
due to their minimal assumptions about data structure. Indeed, this flexibility has resulted in the
application of neural networks to problems refractory to conventional approaches, such as
speech pronunciation from text (Sejnowski and Rosenberg, 1987), which can be viewed as a
classification problem with strings of letters as parameter vectors and phonemes as output. Our
preference for neural networks is shared by other reviewers (Pun et al., 1994) and lent support
by the American Joint Committee on Cancer. To replace the TNM cancer staging system, the
Committee has developed a new prognostic system using an artificial neural network to
combine prognostic factors (Burke, 1994). Nevertheless, the classification problem requires
considerable further study.
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CLASSIFIER TRAINING AND OVERTRAINING

Regardless of the classifier used, training can be performed by three methods. The simplest
approach is simply to divide the data set into two groups, a training set and a testing set. The
training set is used to determine the classifier’s parameters (such as weights in a neural network
or coefficients of a discriminant function) while the testing set is left to evaluate the trained
classifier. If it is difficult to obtain a sufficiently large data set, cross-validation can be used,
allowing training on a larger number of patients. The data set is divided into k groups, of
which k-1 are used for training and the remaining group is used to test the trained classifier.
This is repeated with each of the k groups left as the testing set. A composite measure of
accuracy can be used to evaluate the classificatory scheme. When n-way cross-validation is
performed on n patients, this is called jackknife analysis or leave-one-out analysis. Any cross-
validation scheme yields multiple trained classifiers, but if the accuracy is sufficiently high for
each of them we might propose the same classifier trained on the entire data set as a
classificatory approach. While these training methods may seem obvious, the literature
abounds with examples of poorly constructed studies in which training and testing sets overlap.

If we want to combine classifier training with optimization, the data can be divided into
three parts: a training set, an optimization testing set, and an evaluation testing set (Astion and
Wilding, 1992b). If desired, this may be combined with a scheme for cross-validation. A
variety of classifier models can be compared, e.g., modifying tolerances, architecture, noise,
and transfer function of a neural network. All the classifiers are tested against the optimization
testing set, and the most accurate of the models is chosen. If we are cross-validating, the
process is repeated for permutations of the three groups. The accuracy of this optimized
classifier (or classifiers) may then be evaluated with the new testing facts left in the evaluation
testing set (or sets). Accuracy determined by this method should generally be more realistic
than accuracy estimated with a single testing set.

While at first glance it might seem reasonable to provide a classifier with as many
parameters as are computationally tractable, leaving it to the algorithm to sort out which are
important, this raises problems of overtraining, known in other contexts as overfitting. In any
data classification scheme, two competing factors are at work as the classification rule is
allowed to grow more complex: 1) identifying general features in a data set, those which are
predictive of outcome, and 2) identifying the particular features of specific data points. If the
ratio of the sample size to the number of weights or input parameters (the latter is called the S:I
ratio) is low, a “clever” classifier may focus on the particulars and miss the big picture. Such a
classifier will be able to classify its training cases with great accuracy, but not much more.
While the problem of classifier complexity has been raised mostly as a criticism of overtraining
neural networks (Clark et al., 1994), it takes equally problematic forms in other classificatory
approaches, e.g., the number of splits allowed in CART and the type of discriminant function
and number of covariates in discriminant analysis. In neural networks, overtraining may result
from too many neurons or from too many cycles of training (a consequence of too small a
training tolerance). Illustrating this was a study by Lamb and Niederberger (1993) using neural
networks to predict fertility potential. Feeding a neural network their training set 10,000 times,
it achieved a training classification rate of 92% and a testing rate of 81%. With 1.5 million
cycles of training, the training rate increased to 98% but the testing rate decreased to 64%.

Complicating the matter even further is the fact that morphometric parameters, deriving
from the same images, will in general be highly interdependent. Thus, formal treatments of
sample size, based upon independent input variables, may not entirely apply, typically
proposing more stringent sample size requirements than are necessary. Nevertheless,
haphazard and nondiscriminatory parameter selection will still result in overtraining. The lack
of a clear method of addressing this problem underscores the importance of using biologically
relevant parameters, for a classificatory approach that simulates pathologist’s decision-making
processes and avoids multiple measures of biologic features should minimize some
opportunities for the classifier to overtrain. Neural network overtraining may also be reduced
by choosing a larger training tolerance and fewer hidden neurons.

In the literature, training problems in neural networks are often framed (Astion and
Wilding, 1992b; Wilding et al., 1994) in terms of shrinkage, defined as the difference in the
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classification rates for training and testing facts. This may just cloud the real issue of
overtraining. Overtraining results in incorrect classifications for new testing facts. Shrinkage
may be a second order measure of diagnostic accuracy, but ultimately what we care about is the
accuracy itself, i.e., how well “unknowns” will be classified. (Of course sensitivity,
specificity, and predictive values are similarly of concern, and the argument applies equally to
these measures.) Training classification rate, which certainly should be at least as high as
testing rate, is not particularly important in its own right. In sum, a classifier should be chosen
based upon its ability to classify unknowns.
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