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ABSTRACT

This paper is concerned with some aspects of the unfolding of
sphere size distributions by parametric methods, in particular with a
comparison of the performance of three types of empirical
distribution upon experimental data obtained from neurological
tissue. The results suggest that the log normal function is the most
useful in this area. A comparison of the estimated errors involved in
the parametric and distribution free unfolding of unimodal systems is
attempted, and it is concluded that parametric methods can be
superior when the fit of the empirical function is good or the sample
size is rather small.

INTRODUCTION

" Parametric methods for unfolding sphere size distributions are
usually only considered for isolating the components of bimodal or
polymodal systems. However, the first part of this paper is
concerned with the question: For unimodal systems, can parametric
methods in practice ever give lower estimated errors in any
quantities of interest than distribution free methods? Simulation
work based upon actual experimental data tempts us to answer in the
affirmative, but with some reservations to be discussed.

Central to the application of parametric methods is the choice
of an empirical -analytical distribution whose general shape
approximates to the unfolded (underlying) distribution corresponding
to the experimental data, but in which there are certain unknown
parameters to be determined. The analytical function will normally
have to be substantially skewed for cell biological systems at least.
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We have considered three skewed distributions, log normal, gamma
and Weibull, and have investigated their aptitude for fitting a variety
of experimental profile size distributions.

The distribution iree analysis used is Cruz-Orive's variation of
the traditional Schwartz-Saltykov technique. The parametric
approach employs nonlinear least squares fitting of the -relevant
theoretical profile distribution to the experimental data. In both
cases, section thickness effects were included. Details of the theory
and further references will appear in a companion paper (Scales
et al., 1983).

COMPARATIVE ERROR ESTIMATES FOR UNIMODAL SYSTEMS

The procedure adopted for this part of the work was to take an
experimental profile distribution and unfold it by the distribution free
method. The resulting distribution was used to generate synthetic
profile distributions of various sample sizes by computer simulation.
These were then unfolded by parametric and distribution free
techniques and the estimated errors compared. The sample sizes
taken were 250, 500, 1000 and 2000, chosen to represent what was
thought to be the range normally encountered in practice. At each
sample size, five synthetic profile distributions were generated. *The
derived quantity of interest to us is the numerical density N_, and the

\
.average values of the estimated relative standard error in N
a(N )/N are considered here.

The whole procedure was repeated for two experimental
systems obtained from neurological tissue, one of which (8 degrees of
freedom) was thought to be well represented by a log normal model,
and the other (4 degrees of freedom) not so well (Scales et al., 1983).
For the former, the p-value obtained from the analysis via Xz of the
goodness of fit of the log normal model to the experimental data was
0.13 (experience has shown that a p-value of this size must be
regarded as a reasonably good fit for these experimental systems)
while for the latter the p-value was 0.01. For the purposes of our
numerical experiments, these - distributions were regarded as
population distributions, one of which happens to be almost log
normal and the other not so. Thus our simulations deal with artificial
populations, not the true populations of actual nerve cells. The
results are shown in tables 1 and 2. First note that the errors for the

- parametric approach stay substantially constant because the
distribution from which the samples were drawn is not log normal,
while those for the distribution free approach decrease as the sample
size increases in accordance with the decreasing variance in the
histogram class heights. In the 'good fit' case the errors for the
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parametric approach are always substantially the smaller especially
when the sample size is small. In the 'not so good fit' case the
parametric approach fares less well, but still appears superior when
the sample size is small. We are therefore tempted to say: Use a
parametric method not only when the fit is good but also when the
sample size is small.

Table 1. Estimated relative standard errors in Nv as a function of
sample size for a 'good fit' case.

cr(Nv,/NV

sample size

parametric distribution free
250 0.018 0.061
500 0.016 0.047
1000 0.016 0.033
2000 0.017 0.024

Table 2. Estimated relative standard errors in N as a function of
sample size for a 'not so good fit' case.

. U(Nv) /Nv
sample size
parametric distribution free
250 | 0.026 0.034
500 0.025 0.023
1000 0.031 0.017
2000 0.029 0.012

EMPIRICAL DISTRIBUTIONS FOR PARAMETRIC UNFOLDING

Three empirical distributions, log normal, gamma and Weibull,
were considered for parametric unfolding, each of which has four
parameters including a coefficient and a cut-off (Scales et al., 1983).
For polymodal systems, each component is modelled by its own
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Table 3.  Comparative goodness of fit, L = log normal, G = gamma,
W = Weibull, df = degrees of freedom, p, = p- -value from x?

analysis.
data model sample df modality PC
set size
1 L 1339 8 1 0.126
G 0.000
W 0.000
2 L 570 4 1 0.013
G 0.000
w 0.000
3 L 2521 7 2 0.026
G 0.050
4 L 1166 3 2 0.193
G 0.002
5 L 1108 12 2 0.387
G 0.226
6 L 1054 10~ 2 0.110
G ‘ 0.096
7 L 627 7 2 0.282
G 0.264
8 L 1098 10 2 0.114
G 0.094
9 L 660 7 2 0.041
G 0.005
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function with its own set of four parameters. The individual
coefficients therefore do not restrict normalisation to the original
sample size and consequently can to some extent allow for missing
profiles. Data in the histogram bins corresponding to smaller profile
diameters is usually discarded, being deficient through missing profile
effects. The model is freely allowed to predict the profile
distribution in this region. Effects of missing profiles on the shape of
the profile distribution for the larger diameters can not, however, be
catered for in our present approach. The cut-off parameter is
thought to be essential for all biological systems and there are
biological reasons why this may be so.

These functions were tried out on nine neurological systems,
some unimodal, some bimodal, with a variety of sample sizes, degrees
of freedom and goodnesses of fit. The results are summarised in
table 3. In most cases the log normal function gave the best p-values
and in addition had the best convergence properties in the sense that
a local minimum of the fitting problem was rapidly reached from a
remote starting point. The Weibull function fared worst in this
respect, which led us to abandon it after doing the unimodal systems.
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