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ABSTRACT

Lattice gas models use particles moving and interacting on a graph; developed by physi-
cists to simulate complex flows, they can be used to generate random structures on a
physical basis. In this paper, we review some recent developments of these models, with
the following main topics: after an introduction of the main rules used in the lattice
gas models, namely rules of conservations involved in collisions and boundary conditions,
applications to complex flows in random porous media are presented; they offer the possi-
bility to estimate their permeability and the properties of dispersion of fluids as a function
of the microgeometry. By addition of aggregation rules, it is possible to generate random
aggregates, and to study by simulations processes involving nucleation and growth phe-
nomena in a changing velocity field. Examples based on two phase and multiphase media
will be presented. By introduction of forces of attraction or of repulsion between various
species, immiscible fluid flows, and phase separations can be simulated., Finally, a promis-
ing field concerns the implementation of reaction-diffusion models, where in addition to
fluid motion are allowed chemical reaction between species.
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INTRODUCTION

The lattice gas models developed by physicists are a powerful tool for the simulation of
complex flows. Starting from simple models with a single specie that we briefly recall, it
is easy to perform simulations of flows in random porous media for which some transport
properties can be estimated. By addition of marked particles and of aggregation rules,
random aggregates (even multiphase) can be generated. Other ways of structure gener-
ation are obtained from multiple fluids simulations, or from Reaction-Diffusion models
derived from the lattice gas.

LATTICE GAS MODELS

The lattice gas models enable to implement simulations of flows on a microscopic
level. Here particles with a unit velocity and mass move on the vertices of a graph.
This idea goes back at least to Broadwell (1964), and was recently considerably extended
to solve hydrodynamics problems, mainly in the field of turbulence (Hardy et al., 1976;
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Frisch et al., 1986-1987). In this section, we give the basic rules of construction and some
elementary properties of these models.

Basic Rules: In two dimensions, the FHP model proposed by Frisch, Hasslacher and
Pomeau (1986) is built on a hexagonal lattice; a population of particles having seven
possible velocities (unit velocity with one of the six possible directions on the lattice,
or null velocity) moves on the lattice. At most one particle per velocity is allowed on
every point of the lattice, which corresponds to an exclusion principle. Therefore the
gas can be described by a multi-component random sets, or by seven binary images (one
per velocity). During each time step, every particle moves to its nearest neighbour in
the direction of its velocity; this results in a translation of the corresponding binary
images in the appropriate directions. In addition to the translation of particles, rules of
interaction between particles are required, namely collision rules for the particles of a
gas. These redistribute the velocities with the following constraints: preservation of the
total mass and momentum (and consequently of the kinetics energy) at every vertex of
the graph. The choice of specific rules enables us to change the viscosity of the fluid for
simulations. The process is a sequence of cycles involving the propagation of particles
and the redistribution of their velocities. It can be shown (Frisch et al., 1987) that on a
macroscopic scale, the velocity map satisfies the Navier Stokes equations, which enables
us to simulate hydrodynamics. The great advantage of this model is its simplicity for
implementation, even for complex boundary conditions such as those occurring during
the evolution of a microstructure; since only binary images are used, there is no round-off
errors, and the process can be iterated indefinitely. Three dimensional simulations were
made possible by the construction of a specific lattice (Frisch et al., 1987).

Boundary conditions: they imply the behaviour of particles when reaching obstacles:
if on a vertex located inside a solid obstacle the collision rule is replaced by a bounce-back
condition, the simulated fluid respects the usual no-slip condition (the average velocity
being equal to zero on the boundary). On the edges of the field, periodic conditions
(particles leaving one side of the field are reintroduced with the same velocity on the
opposite side) as well as non periodic conditions (with random injection of particles on
the open edges of the field, as made in (Jeulin, 1992)) can be used.

Some indications on the evolution equations: we summarize now the main steps
and the main assumptions that are used for the derivation of the Navier Stokes equations
from the lattice gas model. Complete derivations are available in (Frisch et al., 1987;
Gatignol, 1975; Spohn, 1991). Starting from the basic rules, the evolution equations
of each population of particles are Boltzmann equations accounting for the balance of
particles involved by the translation and the collision rules. At point z and at the time
step t + 6t we have for the number of particles of type ¢ with the velocity u;:

Ni(t+ 6tz + ;) = Ni(t,z) + A;(N) (1)

Eq. 1 can be considered as a finite difference version of Eq. 2 below, obtained for 6t — 0
and for a — 0, a being the size of the grid:

ON;

1 + W'.gradN; = Ai(N) (2)
When only head-on collisions between two particles occur, cross products between the
variables N; and N; occur. For triple collisions, N;N;N; are present, and so on. Together
with the preservation of mass (Y{=] N; = N) and of momentum (Yi=7 N; o, = N ),
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Eq. 2 leads to the continuity and to the momentum equations, where % is the average

velocity: an
é +div(Nu') =0 (3)
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where I, = 3, Nygalyg, Ur, being the o component of the velocity u;. The next
steps in the calculation uses a Chapman-Enskog expansion of NN; (t,) as a function of the
macroscopic variable u(x,t) and of its gradient, up to the second order. It leads to the
Navier Stokes equations for incompressible flows, with transport coefficients depending on
the A;(V) terms (which reflect the collision rules) and on the solutions of the Boltzmann
equations 1. These involve a dependence on at least the bivariate distributions of N;
and N; at point & and time ¢. Equations for these bivariate distributions involve higher
order distributions. To avoid a common regression “ad infinitum”, new assumptions
must be introduced. Usually is made the Boltzmann’s approximation, considering that
the variables N;(z,t) are independent at the order required by the multiple collisions.
From this assumption, the N (,1) are solutions of non-linear partial differential equations
deduced from Eq. 2. Exact general solutions are known only in particular cases (Gatignol,
1975; Broadwell, 1964). A particular solution in the spatial stationary case for mutually
excluding particles, as the binary images used in lattice gas simulations, is given by the
Fermi-Dirac distribution, when is added the independence between every Ni(z,l) and
N;(2',t'). This approximation is claimed to be valid for the limit case of a low particle
density N (z,t). In that case it comes

I
Cl+exp(h+ q.ws)

; (5)
where the vector ¢° and the constant h are deduced from the mass and momentum
conservation equations. When the macroscopic velocity u is close to zero, the Fermi-
Dirac distribution degenerates into N; = d , where d is the average density, which is the low
velocity equilibrium solution. An expansion of the Fermi-Dirac solution in powers of the
macroscopic velocity, together with the Chapman-Enskog expansion, gives an estimation
of the fluid transport coefficients. Higher order statistics of the random sets generated by
the lattice gas populations (such as for instance their covariances) are unknown, despite
some attempts to derive them in a similar but different context (Boghosian and Levermore,
1987), where only upper bounds of covariances could be found. If the binary velocity field
is replaced by digital fields and if no exclusion rule is acting, the Fermi-Dirac distribution
is replaced by the Maxwell-Boltzmann distribution

N, =exp(~h = 7.7,) (6)

Instead of working with binary images, some authors developed a model based on the use
of local probabilities (0 < N; < 1) and on the Boltzmann independence assumption in
every point x for the collision rule (Mac Namara and Zanetti, 1988; Succi et al., 1989).
This model named the LBG (Lattice Boltzmann Gas) has a considerable success, since it
provides velocity maps without noise, even for small size systems, contrary to the binary
model. However, due to the approximations made in the derivation of the model, there
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is no guarantee that probabilities are obtained in each step of the calculation.
APPLICATION TO FLOW IN POROUS MEDIA

Starting from images of porous media made of solid grains that cannot be accessed by
the fluid particles, it is possible to simulate flows in porous media and to estimate their
transport properties (Rothman, 1988; Jeulin, 1992).

Firstly, by appropriate boundary conditions, or by randomly imposing a drift in the ve-
locity at points of the fluid (which is an input of impulsion to fight against the dissipation
due to the zero velocity on the boundaries), it is possible to impose a macroscopic pres-
sure gradient to a fluid moving through a porous medium. For a given geometry (as
for instance for flows in porous media), since the velocity map solution of the boundary
conditions is unknown, we start from independently and uniformly distributed velocities.
After some iterations (typically twice the length of the field), the velocity map is sta-
bilized. This approach considering the velocity map is the Euler point of view. When
the average velocity is proportional to the pressure gradient, it follows the Darcy’s law
relating the macroscopic flux and the pressure gradient, the proportionality factor being
the tensor of permeability. Thus it becomes possible to estimate the permeability of
a porous medium from lattice gas simulations, using a method that operates at an "un-
dermicroscopic” scale, where basic physical conservation rules are applied. At that scale,
no partial differential equation is acting, and the boundary conditions are easily han-
dled. The simulation leaves a population of particles evolve like a dynamic system, until
a possible statistical equilibrium is reached. This is a typical simulation of a statistical
physics problem. This approach was applied to various Boolean models of porous media,
for which were studied the following points (Jeulin, 1992): variability of the permeability
induced by the distribution of grains in space; influence of the pore area fraction, of the
grain size and of the anisotropy of porous media on the permeability.

Secondly, the dispersion in porous media can be studied from the Lagrange point of
view: instead of considering the velocity field obtained in the lattice gas simulation, it is
possible to mark a given particle and to follow its trajectory with time, which builds a
random walk (a diffusion process or a Brownian motion with an advective velocity field
u). In the present case, the random walk is just the result of the interaction between the
marked particles and the other particles in the fluid, respecting the boundary conditions.
During the simulation, the velocity of the particle is chosen at random among the possible
velocities after each collision. As in (Matheron, 1979), when a macroscopic Fick’s law is
observed, the coordinates X;(t) (i = 1,2) of the trajectory of the marked particle (starting
from x (2;) at time ¢ = 0) in the random velocity field u(x) are diffusion stochastic
processes with expectation and covariance given by

B[X:(t)] = x: + Tt (7)

B[(X:(t) — @i — Tit) (X;(t) — m; — Wst)] = 2Dyt 8)

where T; is the average of the i component of the velocity, while the coefficients D;;
build the effective diffusion tensor of an equivalent homogeneous porous medium. The
macroscopic coefficients T; and D;; obtained from averages of various particles trajectories
are valid for an equivalent homogeneous medium when are fulfilled the conditions for a
macroscopic Fick’s law to exist; these conditions are unknown in general. For some
random media (for instance for self similar, and therefore non stationary porous networks),
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Eqgs (7.8) are not valid, and a t* (with o # 1) behaviour is observed (this is called
anomalous diffusion). In practice for Boolean porous media simulations, we checked the
validity of Eqs (7,8) from the following experimental variograms (with Xi(t) = X (t) and
Xy(t) =Y(t)), from which a fit to a parabolic curve is looked for:

2% (A1) = E[(X(t + At) — X(1))?] = 2D, At + u2(At)? ©
2y(At) = 2v.(At) + 2v,(At) = 2(D, + D,)At + (u2 + ur)(At)?

Additional information is obtained from the empirical distribution of the sojourn time 7
of the particle in the simulated field, F;, (t). If we consider particles starting from O and
leaving the field at the abscissa a at time 7,, we expect in the case of a constant velocity
field (uz,u,) and in an infinite homogeneous medium:

F ()= P{r. <t) (10)
We have: X(t) > a = 7, < t and therefore

P{X(t)za|ra<t}= *P{i—g; a) (11)

If u; = 0, by symmetry we have P{X(t) > a |7, <t} = % and in these conditions
Foft) = 2P(X(0) > a) (12)
When u, > 0 and a > 0, P{X(t) > a|7, <t} ~1 and
F(t) = PX(0) 2 o) (13)

In Eqs (12,13) the probability P{X(t) > a) for a Brownian motion with the drift u, is

obtained by
+oc

; 1 (z — uyt)?
P{X(t) >a)= JED { exp — (W) dz (14)

The Eqs (12,13,14) were largely used together with Eq. 9 to estimate the diffusive prop-
erties of random porous media from simulations (Akulenko, 1995).

Extensions of this approach include three-dimensional flow simulations (Succi et al.,
1989; Somers and Rem, 1992), and two-phase flows in porous media (Rothman, 1990).
Among the potential domains of application can be mentioned complex flows as encoun-
tered in oil reservoirs.

APPLICATION TO SIMULATIONS OF RANDOM MEDIA

Random aggregates: an immediate extension of the lattice gas models is the simulation
of aggregation (even multiphase) processes (Brémond and Jeulin, 1994). A mixture of
a fluid and suspensions is simulated by means of marks (F and S). The standard collision
rules are applied on each vertex of the lattice, and the marks are randomly distributed
after the collisions. The behaviour of the two types of particles F and S differ during
the aggregation process: operating in a field containing obstacles, suspensions are allowed
to aggregate (with the probability p*), and to be bounced back (with the probability
1 — p") when they become the nearest neighbour of an obstacle. Additional conditions
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can be introduced for the aggregation, such as: number of aggregated particles in the
neighbourhood of a candidate, or directional conditions: the particle may be allowed
to aggregate in a neighbourhood made of a cone of 0, 60 or 120 degrees. For instance
simulations shown in illustrations were made with the following rules of aggregation: A
(0 degree), B (120 degrees), C (120 degrees as for B, and at least 2 of the 3 neighbours
must be already aggregated). In addition, particles in the aggregate can leave it for the
fluid with the probability p~, in order to simulate a disintegration process. The growth
of an aggregate from a seed at the middle of the field, with a zero average velocity and
with the aggregation rule A is illustrated by Fig. 1.

8] xv 3.00: ogr002.01.res.2 ;7 xv 3.00: agr003.01.ras.2

L
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Fig.1. Generation of a random aggregate by rule A: 500, 1000, 1500 and 2000 iterations.

The simulation is made on a 200x200 periodic system. These aggregates are very similar
to what is obtained in the so-called DLA (diffusion limited aggregation) model (Witten
and Sander, 1981). Addition of a disintegration results into more compact aggregates.
Replacing rules A and B by rule C gives less ramified aggregates and quasi dendritic
textures as occur in a solidification process are obtained. Interesting morphologies are
obtained with non zero velocity on the boundaries of the field: this is illustrated with
shear conditions, by forcing the flow in two opposite directions on the upper and the
lower boundary as shown in Fig. 2.
The probabilistic properties of these random aggregates, such as T'(K) = P{K N A # ¢},
are not known. Some of them are studied in (Brémond and Jeulin, 1994) from mea-
surements on simulations. It is easy to estimate a "fractal dimension” « from the Eq.
15

A(r) = Kr*ldr (15)

where A(r) is the area of the portion of aggregates inside a crown of radius r and of
thickness dr, centered on the origin of the aggregate. The parameter o was estimated
for each type of aggregation rule, after averaging A(r) over 10 realizations, and keeping
7 < 20. The following results were obtained: o = 1.736,1.672, and 1.813 for rules A,
B, C. For comparison, the parameter o obtained for simulations of DLA aggregates built
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with random walks of particles on a square lattice is equal to 1.715 (Meakin and Sanders,
1985; Meakin, 1987). This is similar to the results of simulations with the rule A.

{®] xv 3.00: cisesu/cis.agr.400..

Fig. 2. Random aggregate obtained by rule A with shear boundary conditions (5000
iterations).
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Another example of aggregation concerns the nucleation and growth of a population
of aggregates: by replacing the single seed by Poisson points, structures similar to the
dendritic solidification out of a melt are obtained; in Fig. 3, an average of 40 seeds per
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200x200 image is chosen. There is a competition between the seeds to trap the particles
in suspension. In addition, the aggregates are allowed to coalesce. The structure is
periodic vertically and horizontally. With a continuous introduction of random seeds, the
nucleation generates a dispersion in the sizes of aggregates, as seen on Fig. 4.

Fig.4. Nucleation and growth of aggregates (rule C, 2000 iterations)

The deposition of particles may be produced during sedimentation processes, such as
for the formation of geological structures. We produced simulations of the deposition
of particles submitted to a vertical force, such as the gravity, on a field closed on its
lower boundary, and open on its vertical boundaries, with periodic conditions. This is
illustrated in Fig. 5 for the three previous rules of aggregation. The obtained structures
are very similar to a dendritic solidification on a cold plate. Finally if a probability of
disintegration is added, a packing of the structure by the gravity field is obtained as seen
on Fig. 6.

Multiphase random aggregates: they can be simulated by introduction of various
colors (A;) for the particles of the suspension (Brémond and Jeulin, 1994). The probability
of aggregation p* is now replaced by a probability matrix P with coefficients p;; where
Di; is the probability for a particle of the type i to aggregate to a clustered particle
A;. Similarly can be introduced a probability matrix P’ for the disintegration. This is
illustrated here for two colors with a diagonal matrix P, resulting in a self aggregation
process, and with Poisson seeds: in Fig. 7, the densities of the two species are equal and
varying, while the density of seeds of specie B is nine times higher than for the specie A.
The clusters B can grow normally, while the clusters A are disturbed by clusters B which
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produce a wall effect.

depot2/essaild.res.2 E

Fig. 5. Deposition of aggregates (rules A, B, C, 5000 iterations)

Fig. 6. Deposition and packing of aggregates (rule B after 200, 400, 800, 1600, and 3200
iterations)

Other interesting applications of lattice gas models can be mentioned: flows of suspensions
(Ladd et al., 1988); in (Brémond, 1993; Brémond et al., 1995), the filtration of suspensions
in liquid iron is simulated, in order to be able to design new filter geometrical properties
to optimize the retention of impurities. A model, based on aggregation and disintegration
processes, was developed to reproduce the filtration process inside a channel of a ceramic
filter. It was calibrated from various experimental data: measurement of the flux of liquid
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iron during the filtration; examination of polished sections of clogged filters, where mor-
phological measurements on the obtained aggregates could be compared to the structures
generated by the simulations. Suspensions of a gas and a liquid are simulated in (Appert
and Zaleski, 1990; Appert et al., 1991), while evaporation and phase separation in porous
media are studied with the same model in (Pot, 1994). This is obtained in a clever way
by introducing a force attracting particles a certain distance apart.

Fig. 7. Two-phase aggregates (10% red seeds and 90% yellow seeds) in a blue fluid.
Dij = bij.

REACTION-DIFFUSION MODELS

Finally Reaction-Diffusion models simulating spatial time random structures are stud-
ied on lattice gas in (Dab and Boon, 1989; Dab et al., 1990). The potential domains
of application of Reaction-Diffusion models is rather broad: study and simulation of
microstructures resulting from chemical reactions, chemical segregations during solidifi-
cation processes; ecological models (competition between various species); biosystems; on
a larger scale, geochemical processes or phenomena involved in the environment (disper-
sion of polluting species...) are relevant of these types of models. In mechanics, certain
problems can be modelled in this way: evolution of populations of dislocations, or of
microcracks in interaction, segregations in granular media,...

The Reaction-Diffusion models can be developed at different scales: at a macroscopic
scale, where the medium is a continuum governed by partial differential equations; at a
mesoscopic scale, where all the variables (chemical concentrations, space and time) are
discrete; at a microscopic scale where the medium is a set of particles of different species.
Reaction-Diffusion equations: at the macroscopic scale of a continuum, we are looking
for the evolution of the chemical concentrations Z;;(z) of the species j (j = 1,2,...,m)
submitted to chemical reactions and to diffusion. Every component Z;(z) follows the
evolution equation

0Z(z) _

= div(Dj;(z)gradZ(z)) + Fj(z,t, Z;) (16)
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InEq. (16), Z, is the vector with components Zji(x), gradZ;,(z) is the gradient (with com-
ponents Z;1()/0z,) and div is the divergence of a vector field (div(A) = ¥, 0A(z)/dz,).
The variables Zj,(z) are defined in R". The Dj(x) are the coefficients of diffusion of the
species j. These can be space dependent (diffusion in heterogeneous media) or can be
constant. Every D;(z) is a symmetric, positive definite second order tensor. For an
isotropic diffusion in R", D;(z) is a scalar.

The term Fj(z,t, Z;) is a non linear function of the Zjt. It is usually polynomial, as far
as the kinetics of chemical reactions is concerned. For instance, consider the following
reaction between four species X; (j = 1,2, 3, 4)

2X1 + Xy =31 2X5 + X, (17)

The concentrations Zj, are solutions of Eq. 16 with F} (%) = By(2) = —k1 22 20+ kg 22 74
and F3(Z;) = Fy(Z,) = —F1(Z;), where k; and ky are the kinetics constants of the reaction
Eq. 17.

Reaction-Diffusion on lattice gas: in (Dab and Boon, 1989; Dab et al., 1990), one
specific model (the Schlogl model) was implemented on a square grid. In addition to the
collision and translation rules, the chemical reaction term Fi(z,t, 2;) (a polynomial of
degree three in the concentration of a single specie for this model) must be generated. It
is obtained on average by means of a birth and death process concerning the number of
particles per node, with appropriate transition probabilities. Simulations made in (Dab
and Boon, 1989; Dab et al., 1990; Akulenko, 1995) show generation of random structures
corresponding to two stable values of the concentration, obtained from local fluctuations
of the density of particles.

CONCLUSION

This brief outline of lattice gas models and of their extension intends to demonstrate the
potential use of these models for random media generation. Proposed to solve initially
complex flow problems, they have a much wider field of applications. Their strength
resides in their simplicity of implementation (complex phenomena can be studied from
simple rules and with few adjustable parameters). The main difficulties with their use
is presently the lack of theoretical results concerning the statistical properties of the
generated structures, as opposed to more conventional random sets models. There is
undoubtedly work for theory and also for applications in the future.
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