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ABSTRACT

This article proposes new planar shape parameters :

Circularity parameters issued from classical or new isoperimetric inequalities.

Regularity parameters evaluating the proximity of a given shape to a regular polygon or a
circumscrible polygon.
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I - INTRODUCTION

We call "shape" a simply connected compact set of IR2. Furthermore, it will be
restricted to a planar shape with a non empty interior, and such that the perimeter exists; such
a shape will be denoted by A in what follows.

Image Processing uses shape parameters in order to give a shape classification or,
more simply, a proximity degree of the studied shape to a reference one.

If the reference shape is a disk these parameters are circularity parameters and if the
reference shape is a regular polygon they are regularity parameters.

Let us recall that a positive real valued function f defined on the set of planar shapes is
a shape parameter provided f is scale invariant.

II - CIRCULARITY PARAMETERS
Let A denote a planar shape .

1) The most classical circularity parameter is defined by :

P2(A)
In(A) =——"——
Fo() p——

where P denotes the perimeter and | the area.

This well known parameter derives from the isoperimetric inequality :
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P2(A) - 4 T (A) 20 1)
If A is convex, the equality holds if and only if A is a disk.
This inequality can be deduced from Bonnesen's inequality [Bonnesen (1929)], which

has been proved for a convex compact set A:

P2(A) - 4 T W(A) > 12 (R(A) - r(A))2 (2)
where R(A) and r(A) denote respectively the circumradius and the inradius of A.
Then : Ip(A) 2 1. If A is convex Ip(A)=1¢ Aisadisk.

For the implementation, if we denote by € an arbitrary allowance (€ > 0), the nearness
of the shape A to a disk will be expressed by : TIp(A)-1<¢g
In the following, shape parameters will be always employed in this way.

Notes :
- It is better to apply the parameter Ip if A is convex ( because if there is a concavity in
the boundary , P(A) increases and [L(A) decreases ).

- We need a precise computation of the perimeter on the grid.

2) New circularity parameters
Let A be a convex body. With previous notations, we can define :

P(A) R(A) Ty T

Ii1(A) =
A= @) WA T 2(A)

These parameters are clearly scale invariant. They are derived from the following
inequalities [ see Bandle (1980) and Bonnesen (1929) ] :
P(A) .R(A)22 1 (A) 3
P(A) . 1(A) = 1 (A) + T r2(A) 4)
The equalities hold if and only if A is a disk. So :
Vie[l,2] Ii(A)=21
I1(A) = 1A is a disk. If A has a unique inscribed disk I(A) = 1A is a disk.

Notes :

The implementation of these coefficients necessitates efficient algorithms for the
determination of R(A) and r(A). The ultimate eroded set from which r(A) is derived can be
given by a distance map (see Danielsson (1980).

The "circumscribed window" algorithm gives R(A) [Jourlin, Laget (1984)].
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3) Circularity parameters derived from Brunn-Minkowski inequality

Let us recall that the Brunn-Minkowski inequality for two planar shapes A and B,
[Brunn (1928), Berger (1977)] says :

Ve [0, 1] \/M(KAEB(I-%)B) 2 7&\/u(A)+(1-7&)\ju(B) (5)
where @ denotes Minkowski addition [Matheron (1975)]

The equality holds if and only if A and B are homothetic convex compact sets.
If A =§1 (5) becomes :

Via® B) = V) + Vu@) ©)

We denote the equivalent radius by :

(A= [ BA) )
T

which is not more than the radius of a disk of area i(A).
If By denotes the disk of radius p (p > 0) centred at the origin, we can deduce :
Ie (A®Bp) 2 1e(A) + p
with equality if A is a disk.
Thus, we can obtain a new circularity parameter :
Ie (A @ Bire(a)) - Te(A)
Are(A)

I3 (MA) =

with A >0

Using (7) it can be reexpressed as:

b A 2 V(A @ Bhrea) - Vi(a)

AV (A

Thus I3 (AA) > 1
If A is convex B(MLA) =1 ¢ A s a disk.

III - REGULARITY PARAMETERS AND " CIRCUMSCRIBILITY" PARAMETERS
On a grid , a shape is always polygonal. So it seems interesting to compare a
polygonal shape to a reference one ( a regular polygon for example).
In the following, A denotes a convex polygonal shape.

1) If A is n-sided n=>3)
The following inequalities hold [Fejes Toth (1953)] :

ntan o 2(A) S p(A) < % n sin %’t R2(A) ®)
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21 tan ;—E KA) < P(A) < 2nsing R(A) ©)

P2(A) 2 41 u(A) tan (10)

These inequalities become equalities if and only if A is regular [Fejes Toth (1953),
Blaschke (1916)] . They mean that, among the n-sided polygonal shapes of given perimeter

(respectively of given area), the regular ones have a maximal area (respectively a minimal
perimeter). (Inequality (10) is similar to (1) : the limit of n tan - is 7 when n tends to

infinity , and we obtain (1) from (10)).
Thus, the following coefficients are regularity parameters :

2 WA A
Ly =— KA 15(a) = —H&—
n'sin = R2(A) n tan - 12(A)
Tg(A) =— ) &)= — & —
2 n sin g R(A) 2 ntan gr(A)
2
Ia(A) =— )
4ntan = u(A)
I4(A), Ig(A) £ 1 Is(A), I7(A), Ig(A) 2 1

Vjie[4,8 I(A)=1 < Aisregular

Note : The use of these coefficients rests on the choice of an adequate convex polygonal
approximation (edge vectorization) to obtain the number n of sides of A.

2) If the number of sides of A is unknown
a) The Lhuillier inequality [Fejes Toth (1953)] can be expressed by
P2(A) 24 I(A) p(A) 1n
where A' is the convex polygon whose sides are parallel to the sides of A, taken in the
same order, and all tangent to the unit disk. Therefore J(A") is dimensionless.
Notes :
Since (A" > 1t , we derive from (11) the classical isoperimetric inequality (1). The

equality case in (11) is realized if the sides of A are all tangent to a disk. Such a
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polygon will be called a circumscrible polygon (see figure 1) (a regular polygon, a

triangle are particular circumscrible polygons).

A A

figl:a circumscrible polygon

Thus we deduce a new shape parameter :

2
Ioa) = — AL
4 u(A) p(A)
Ig(A) =1 Ig(A) = | & A is circumscrible
b) From the inequality :
P(A) r(A) <2 w(A) (12)

where the equality holds if and only if A is circumscrible we derive another shape parameter:

P(A) 1(A)
[jp(A) = ——1==
10(A) 2 1A)

Lip(A) £ 1 I10(A) = 1 & A is circumscrible

IV. IMPLEMENTATION - RESULTS - CONCLUSION

Here are computed results for simple shapes :
13 .59 1.17 1.04

Ip 1.07 1 1
I 1.16 1.21 2.26 1.52 1.20
I 1.03 1.06 1.06 1.02 1.00

I3 (=)| 102 103 I3 104 T01
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(]

I 0.87 0.72 0.74 0.92
I5 111 1.19 1.26 1.50
Is 0.98 0.93 0.89 0.98
I7 1.11 1.19 1.17 1.25
Ig 1.11 1.19 1.08 1.04
I 1.00 1.00 4.29 1.04
110 1.00 1.00 0.93 0.83

Using 11 allows to differentiate easily the three ellipses. But usually, for a better
estimation of the circularity several parameters should be used.The discrepancy with theoretical
values is less than 1%; it is due to the difficulty to compute on a grid accurate values of
perimeter, circumradius and inradius.

For a circumscrible polygon I5 = I7 =Ig , I9=I10=1 . The indices I4, Is, I 6, I7, I8
(respectively Ig, I10) get apart from the value 1 when the shape gets apart from a regular
polygon (respectively a circumscrible polygon). For a best evaluation of polygonal regularity
or circumscribility all these last parameters should be used.
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