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ABSTRACT

An indirect method for the estimation of the area measure of a planar set X from
the convex ring is proposed. At first, the mixed area A(X,VK) of X with sufficiently
enough rotations ¥ of a chosen convex test set I is estimated by means of the dilation
area. Then, the area measure estimate is obtained by solving an integral equation.
The estimation bias is discussed and several particular examples are presented.
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INTRODUCTION

Let X be a planar body from the convex ring (i.e. X can be represented as a
finite union of convex compact sets with non-empty interiors). The oriented normal
direction distribution is the distribution of the unit outer normal to X over the
boundary X. Multiplied by the total boundary length, it equals the area measure
ox of X introduced originally for convex bodies and extended to finite unions by
additivity (see Schneider, 1993). (The notion "area measure” follows from the spatial
case, where oy (B) is the surface area of all boundary points of X at which the unit
outer normal falls within B.) When considering only the direction of the line normal
to 90X, the (non-oriented) normal direction distribution is obtained; it is an even
distribution on the unit sphere S, depends only on X and is usually estimated by
the stereological method of linear intersection counts (Stoyan et al., 1987).

Linear probes are clearly not sufficient for the estimation of oy. The proposed
method of estimation is based on the relation for mixed areas

|
AX,K) = 3 / (K, u) ox(du) (1)

2Js
where K is a convex body with support function h(K,-) (h(I,u) is the distance
from the origin of the support line to & perpendicular to u € S'). The mixed area
can be estimated by means of the relation

A(}\’, 1\) _ ll\l:ﬂ A(\’ &4 51{) _ A(‘\r) (2)
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(Rataj, 1996). Note that the area difference A(X @ eK) — A(X) can be estimated
by standard stereological methods.

When estimating ox by means of (1), we chose a fixed convex body K (test set)
and estimate A(X,JI) for a sufficiently dense net of rotations ¥ € SO(2). Then,
(1) becomes

1
A(X,9K) = /S (I, 07 ) ox(du), 9 € SO(2). (3)

An estimate of o is then obtained as a solution of this integral equation, which can
be obtained by using the Fourier transforms.

The proposed method can be adapted to the spatial case without great difficul-
ties. The mixed area is replaced by mixed volume and, analogously to (2), it can be
proved that

V(X, X, K) = lim VX @ek) — V(X))
e\,0 3
The main difference is that the integral equation analogous to (3) must be solved
by using the spherical harmonics.

The method is not strictly limited to sets from the convex ring. The relations
(1,2,3) remain valid if X is a set of positive reach (a set system including both the
convex sets and sets with C2-smooth boundary) or a finite union of such sets. In
such case, (1) is taken for definition of mixed area (volume) and (2) follows from a
recent result of Rataj & Zédhle (1995).

The area measure ox corresponds uniquely to the convex body called the convex-
ification of X introduced by Weil (1995): in fact, the convexification is the unique
(up to translations) convex body whose area function coincides with that of X. In
his paper, Weil (1995) mentions two different estimation methods of the convexifica-
tion (or, equivalently, of the area measure). The first one is based on the polygonal
approximation of X (direct method) and the second one on the representation of X
as a finite union of convex bodies and using the additivity of area measures.

ESTIMATION OF MIXED VOLUME

Let X belong to the convex ring. Relation (2) suggests us to use an estimator of

AX ®eK) — A(X)
2e

A(X,K) =

as an estimator of the mixed area A(X, K). The area A(Z) of a set Z is estimated
standardly by using a grid of test points of density A (number of test points per unit
area), with estimator variance A"'A(Z) if the test points are chosen independently
(for a regular point lattice, the variance is generally even smaller - see e.g. Matérn,
1989). It follows that the variance of the corresponding estimator A.(X,K) of
A (X, K) fulfils in general

g

A(X @)\ X) , AX,K) _ A(X, B)

rar A 4 < =~
var 4:(X, K) < Ae? e De
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assuming that K is contained in the unit ball B (we have used again (2)).
The quality of the mixed volume estimator depends critically on the bias

Ad(X,K) = A(X, K) — A(X, K).

It is clear that e must not be chosen too small, in order to keep the estimator
variance of A, (X, K') small enough. An upper bound for A (X, K) has been found
in Rataj (1996):

|A(X, K)| < %A(X, B) + 2(1_6%,\/(,\:),

where x(X) is the Euler-Poincaré characteristic of X and he(X) is a quantity defined

by means of the exoskeleton S(X) of X and with the property lim,_,o h.(X) = 0

and

A((S(X®) @eB)n (90X ® eB))
A(0X @ eB)

i.e. he(X) is approximately twice the area fraction of the e-parallel set of the bound-
ary of X covered by the e-parallel set of the exoskeleton. This quantity can again
been estimated by means of the point count method. The estimation of the mixed
volume can thus procede in the following steps:

he(X) =2 he(X) =2 (e = 0),

L. choose ¢ so that h.(X) and, consequently, the bias [Ae(X, K)| is small enough;

2. choose the density A of the point grid so that the variance of AE(X, K) is small
enough.

Of course we neglect the errors caused by the image delineation.
We illustrate the bias on two simple examples shown on Figure 1: choosing the
interval with end points (—1,0) and (1, 0) for the test set K, we have

_J 0, e < p,
Ad(X, K) = { 2a(1—p/e), e>p
for the case a) and
_ ) be/p, e<p,
el K= { b2~ pfe), €>p

for the case b).
ESTIMATION OF oy
As mentioned in the Introduction, the proposed method consists in the estima-

tion of the mixed volume of X with (sufficiently enough) rotations of a chosen convex
test set . This requires the solution of the integral equation (3). Identifying St
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a) b)

Figure 1:

with the interval [0,27) and denoting by K* the rotation of K by an angle s, we
can rewrite (3) in the form

1
AKK) =3 fo h(K,t — s)ox(dt), s € [0,2r). (4)

The first question is whether (4) is theoretically solvable, i.e. whether the values
A(X,K®) (s € [0,27)) determine the measure ox uniquely. It has been shown in
Rataj (1996) that (4) is solvable if and only if

2m .
. /0 h(K, t)ektdt £0 for k=0,2,3,4,.... (5)

Sets fulfilling (5) cannot obviously be symmetric w.r.t. the origin. Examples of such
sets are:

e sector with angle 6 with either §/ irrational or é/m = p/2¢ with p odd,
- e isosceles triangle with angle § between the two sides of the same length which
is not a rational multiple of .

The practical solution of (4) can be carried out in different ways. We shall discuss
here the approach based on the estimation of Fourier coefficients.
Denote

b.:/ iy (dt),
k [0,277)e UA( )

cr = e A(X, K*)ds

[0,27)
the Fourier coefficients of ox and the function s — A(X, K*), respectively. Using
(4) and (5), we find that

Ek:a.kBk, k=0,1,2,....
Suppose that we have estimates A(X, K% ) of A(X, ) at the points

0<s1 <8< < sy <2m.
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Then, we can estimate the coefficients c; by

N
&= (s — sj-1)e™ I A(X, K*) (6)

j=1
(we set so = sy — 2m) and the Fourier coefficients of oy by
b =éfar, k#1. (7)
The estimation bias of ¢ fulfills

& —ar] < kmax|s; — s+ max JA(X, K%) — A(X, K*%)]

(we have used the fact that k is the Lipschitz constant of s e’*s). The method
described in Section 2 enables us to obtain estimates of mixed area with estimation
error sufficiently small in probability. Here we need, however, these errors to be
bounded uniformly for all directions s;. This can be achieved only after additional
smoothing applied to /i(X , I(%7), so that the resulting estimators of b, are consistent.

In practice we estimate, of course, only a few coefficients by, k < ko (the variance
of by, increases with k). A question is, what is the quality of the approximation of
ox by the density function in the form of the trigonometrical polynomial

ko )
ko (S) = by + Z bkelks.
k=0

The example of X being a rectangular triangle is shown on Figure 2.
APPLICABILITY OF THE METHOD

The proposed method of estimation of oriented normal direction distribution can be
used for planar sets with ”enough smooth” boundary (for such sets, the bias upper
bound h(X) tends to 0 quickly enough). For the test set X, any of the examples
mentioned in the previous section can be used. In fact, we need not fulfil strictly
the condition on K being convex, since it can be shown that

|A(X @ elX) — A(X @ econv(K))| = o(e).

Thus, instead of a triangle we can use a there-point test set &, in which case the
dilation can be obtained then as a union of the object with its two translates (third-
order analysis). The mixed areas must be estimated with a high accuracy and,
for the estimation of the Fourier coefficients of oy, a preliminary smoothing of the
estimated mixed areas should be done.
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Figure 2: The rectangular triangle X and the corresponding approximations g,
g3 and gy of its area measure (the exact discrete area measure is indicated by the
vertical segments of lengths proportional to the edge lengths).
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