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ABSTRACT

Four different stereological estimators for the model parameter 7 of the spatial Poisson-
Voronoi tessellation are compared with respect to their bias and variance by means of a
Monte-Carlo study. Formulae are given for variance prediction. An estimator based on
vertex counting is found to be the best one. Robustness is investigated by applying the

estimators to Voronoi tessellations with respect to other generating point processes.
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INTRODUCTION

Spatial cellular or crystalline structures which result from a growth process can
successfully be described using Voronoi tessellations, for examples see e.g. Okabe et al.
(1992) or Stoyan et al. (1987). A random spatial Voronoi tessellation is a division of
space into convex regions — the cells — defined with respect to a generating point process
of so-called germs. Each cell consists of those points in space which are closer to the
generating germ than to all other germs.

If the germs constitute a homogeneous Poisson point process, then the tessellation is
said to be a Poisson-Voronoi tessellation (PVT). The only parameter of this model is
the intensity 7 of the generating germ process, the mean number of points per unit
volume.

For a variety of mean values and higher moments of geometric characteristics of the
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spatial cells as well as of the planar section cells of the PVT, formulae in terms of T are
known, see Stoyan et al. (1987) and Brakke (1985) for summaries. For example, the
mean surface area is given by E(S,)=5.82177%/3, and the mean average breadth by
E(bs) = 1.45877 /3, Thus, knowledge of 7 implies complete information about the
properties of the PVT.

In practice, often only a single plane section of an investigated structure is available.
Therefore, the present paper gives estimators for 7 based on information from one plane
section. They are compared with respect to their bias and variance by means of Monte-
Carlo simulations.

Independent of the generating point process of a random Voronoi tessellation, the mean
volume of the cells is equal to 7. Hence, 7 is a parameter of high practical relevance.
To get an impression on the robustness of the different estimators for 7, they are
exemplarily applied to Voronoi tessellations with respect to germ processes which are in
some sense more regular and more irregular than a Poisson point process of the same

intensity, respectively.
THE ESTIMATORS

The four estimators studied in this paper are based on the following relations between

stereological mean values and the parameter 7 of the PVT, cf. Stoyan et al. (1987):

Py=3Ly=F-V-rP1@) 7, (1)
Na= NyE(b) =5 (P n 1) 7, 2)
and
Ly=28,=n- (53 p(é) 173 (3)
A 4 14 6 3 )

where P, denotes the mean number of vertices of the planar section tessellation per
unit area, N, the mean number of cell profiles per unit area, and L, the mean total
edge length per unit area. A simple relation between N, and E(a), the mean area of the

cell profiles, can be used to construct a fourth estimator, namely

Ny==Ll.. (4)

From these formulae, four estimators of 7 are derived as follows:
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= liﬁ.w—s/z D) N2 % 05680 N2, (6)
7= 7% () Lo ~0.0837- 1%, (7)

and
7, ~0.5680-a /2. (8)

While #;, and #, require measurements of edge lengths and areas, respectively, 7p and

#y use simple point or cell counting. Given an observation window W with area AW),

d Po=Tm )
jJA = j(—ll//IV/)) (10)

are unbiased estimators for P4 and L, respectively. The number of vertices P(W) and
the total edge length L(W) inside W can be evaluated without taking care of edge
effects. To determine NOW)

Ny= A (11)
where N(W) denotes the number of cells ‘inside’ W, a counting procedure has to be
used which considers edge effects, see Schwandtke et al. (1987) or Gundersen (1978). In
the present study, a unique ‘sampling’ point, the leftmost vertex, was assigned to each
cell, and the number of these points in W was counted. Correspondingly, the mean area
@ of the section cells was obtained by averaging over all the cells whose sampling point

was inside W.
SIMULATION

The four estimators were investigated by means of a computer simulation. To this end,
aggregates of cells of spatial PVT with 7 =1 were generated. For details concerning the
simulation procedure see Lorz and Hahn (1993) and Mgller et al. (1989). Isotropic
random planar sections were taken from the aggregates and square observation windows
were drawn in the section planes. The aggregates were made large enough to ensure that
the observation windows were completely filled with cells. The edge lengths of the
observation windows were calculated using Eq. 2 such that the expected number of cells
inside was 50, 60, ... , 200. Thus, the results can be related to the sample size. About
7200 samples were generated for each window size.

Additionally, about 5500 samples were generated each for Voronoi tessellations with

respect to other point processes of same intensity 7 =1, to get information about the
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robustness of the estimators. As examples, Voronoi tessellations were chosen, which are
constructed with respect to a Matern hard-core point process (HVT), to a simple
sequential inhibition point process (SVT), and to a Matern cluster point process (CVT).
SVT and HVT are, in some sense, more regular than PVT whereas CVT is more
irregular. For a mathematical definition of these point processes see Diggle (1983) and
Stoyan et al. (1987).

The HVT as well as the SVT model can be characterized by the scale parameter Aper
the mean number of points of the generating point process per unit volume, and the
shape parameter p,. =\, %7[' R}, the mean volume fraction of the hard cores with
radius R, (Lorz and Hahn, 1993). For the HVT the parameter p,, has to be taken
from the interval [0, —é—) whereas for the SVT p,. can be chosen between 0 and
approximately 0.4.

The model parameters of the CVT are the scale parameter- ) ;, the mean number of

ch
points of the generating cluster point process per unit volume, and the shape parameters
N, the mean number of points per cluster, and R, the cluster radius (Stoyan et al.,

1987). Instead of R,

pclzl—exp{—]/:[—ccll 33—27ng1} (12)
is used as third model parameter. It is scale invariant and can be interpreted as
(approximately) the probability that neighbouring clusters ‘overlap’.

As in Hahn and Lorz (1993) and Krawietz and Lorz (1991), the parameters pj, = 0.1
(HVT), pp.=0.2 (SVT), and N,;=10 and p,;=0.7 (CVT) were chosen for the
investigation of the robustness of the estimators. The intensities A, and Ag Were set to

unity.
RESULTS AND DISCUSSION

Empirical biases were calculated for every window. The results are summarized in Tbl.
1, which also contains the empirical estimation variances. In practical applications, it is
desirable to have a relation between the size of the observation window, which is
expressed here in terms of the expected number n of section cells, and the coefficient of
variation, cv = y/variance/mean. In the case of regular experiments, cv = const/\/n .
Therefore, y/n - cv is also contained in Thl. 1. For all the four estimators, the biases are
less than 1% for a sample size of n =50, and they decrease rapidly with increasing
sample size. This suggests an asymptotic unbiasedness. The quantity \/n-cv seems to

be independent of n, so that it appears admissible to give the following rules of thumb:

cv(Tp) = 1.04/\/n, cv(fy)~1.04/\/n, cv(#,) ~1.09/\/n, and cv(#,) =~ 1.05//n.
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The four estimators show hardly any difference concerning bias and variance. In

practical applications, one has to expect that the variance of both #; and 7, would be

increased by additional measuring errors. Thus, the estimators 7p and 7, which are

based on counting, should be preferred. Among these two methods, 7p is easier to

manage: there are no problems with edge effects.

Table 1. Empirical bias, variance and /n-cv of the four estimators.

n P ™~ L Ta
bias var \/7_1 -cv bias var \/; ccv bias var \/; ccv bias var \/1_1 ccv
50 0.0033 | 0.0213 | 1.0329 | 0.0041 | 0.0212 | 1.0298 | 0.0079 | 0.0235 | 1.0842 | 0.0056 | 0.0218 | 1.0440
60 0.0040 | 0.0179 | 1.0370 | 0.0036 | 0.0179 | 1.0371 { 0.0068 | 0.0199 | 1.0927 | 0.0044 | 0.0184 | 1.0502
70 0.0033 | 0.0156 | 1.0444 | 0.0025 | 0.0156 [ 1.0460 { 0.0060 | 0.0171 | 1.0949 | 0.0039 | 0.0158 | 1.0516
80 0.0033 | 0.0137 | 1.0458 | 0.0026 | 0.0137 [ 1.0481 | 0.0056 | 0.0149 | 1.0935 | 0.0028 | 0.0137 | 1.0471
90 0.0022 | 0.0122 | 1.0485 | 0.0026 | 0.0123 [ 1.0503 | 0.0045 | 0.0133 | 1.0948 | 0.0036 | 0.0124 | 1.0584
100 0.0021 | 0.0110 ( 1.0510 | 0.0016 | 0.0110 [ 1.0501 | 0.0042 | 0.0121 | 1.1018 | 0.0024 | 0.0112 | 1.0598
110 0.0019 | 0.0101 | 1.0524 | 0.0012 [ 0.0100 | 1.0469 | 0.0037 { 0.0111 1.1027 [ 0.0017 | 0.0102 | 1.0574
120 0.0015 | 0.0092 | 1.0489 | 0.0014 [ 0.0092 [ 1.0495 | 0.0034 | 0.0101 | 1.0993 | 0.0017 | 0.0093 | 1.0541
130 0.0011 | 0.0085 | 1.0497 | 0.0014 | 0.0085 [ 1.0502 [ 0.0032 | 0.0093 | 1.0976 | 0.0015 | 0.0086 | 1.0550
140 0.0012 | 0.0078 | 1.0461 | 0.0010 | 0.0077 [ 1.0394 | 0.0029 | 0.0086 | 1.0974 | 0.0015 | 0.0079 | 1.0546
150 0.0013 | 0.0073 | 1.0435 | 0.0009 [ 0.0072 | 1.0401 | 0.0029 | 0.0080 | 1.0945 | 0.0014 | 0.0073 | 1.0478
160 0.0014 | 0.0067 | 1.0379 | 0.0010 [ 0.0067 [ 1.0369 | 0.0027 | 0.0074 | 1.0853 | 0.0012 | 0.0068 | 1.0406
170 0.0015 | 0.0063 | 1.0356 | 0.0009 | 0.0064 | 1.0421 | 0.0028 | 0.0069 | 1.0857 | 0.0012 | 0.0063 | 1.0365
180 0.0013 | 0.0059 | 1.0304 | 0.0012 | 0.0059 | 1.0320 | 0.0028 | 0.0065 [ 1.0827 | 0.0014 | 0.0059 | 1.0341
190 0.0013 | 0.0056 | 1.0315 | 0.0013 | 0.0057 | 1.0367 | 0.0026 | 0.0062 | 1.0835 | 0.0013 [ 0.0057 | 1.0399
200 0.0009 | 0.0054 | 1.0363 | 0.0013 | 0.0054 [ 1.0390 | 0.0023 | 0.0059 | 1.0884 | 0.0015 | 0.0054 | 1.0416

Table 2. Empirical bias, variance and /n-cv of the four estimators for tessellations
which are more regular (SVT, HVT) and more irregular (CVT) than the PVT,
respectively.

SVT Tp TN T Ta
n bias var ‘/; ‘cv bias var \/1: ccv bias var \/; -cv bias var \/; ccv
50 -0.0353 | 0.0086 | 0.6561 | -0.0355 | 0.0086 | 0.6550 | -0.0814 | 0.0076 | 0.6149 | -0.0342 [ 0.0080 | 0.6340
100 -0.0371 | 0.0042 | 0.6486 | -0.0372 | 0.0042 | 0.6475 | -0.0843 | 0.0037 | 0.6114 | -0.0371 [ 0.0040 | 0.6363
150 -0.0382 | 0.0027 | 0.6343 | -0.0380 | 0.0027 | 0.6420 | -0.0855 | 0.0025 | 0.6074 | -0.0385 | 0.0027 | 0.6325
200 -0.0386 | 0.0021 [ 0.6438 | -0.0390 | 0.0021 | 0.6458 | -0.0857 | 0.0018 | 0.6053 | -0.0387 | 0.0020 | 0.6353

HVT p ™ L "a
n bias var \/1_-; -cv bias var \/; -cv bias var \/; -cv bias var \/; -cv
50 -0.0211 | 0.0121 [ 0.7789 | -0.0205 | 0.0122 | 0.7824 | -0.0459 | 0.0116 | 0.7623 | -0.0198 | 0.0119 | 0.7727
100 -0.0219 [ 0.0060 | 0.7722 | -0.0219 | 0.0059 | 0.7659 | -0.0474 | 0.0058 | 0.7629 [ -0.0211 | 0.0059 | 0.7690
150 -0.0217 | 0.0040 | 0.7768 | -0.0219 | 0.0040 | 0.7750 | -0.0480 | 0.0039 [ 0.7618 [ -0.0217 | 0.0040 | 0.7699
200 -0.0221 | 0.0029 | 0.7638 | -0.0218 [ 0.0029 | 0.7635 | -0.0477 | 0.0028 | 0.7495 | -0.0220 | 0.0028 | 0.7537

CVT Tp TN Tr Ta
n bias var \/; -cv bias var \/r: ccv bias var \/; ccv bias var \/1: ccv
50 -0.0419 | 0.0928 | 2.1542 | -0.0410 | 0.0940 | 2.1684 | -0.0646 | 0.0908 | 2.1303 | -0.0336 | 0.1008 | 2.2446
100 -0.0503 | 0.0492 | 2.2189 | -0.0499 | 0.0495 | 2.2242 | -0.0822 | 0.0472 | 2.1737 | -0.0489 | 0.0512 | 2.2627
150 -0.0531 | 0.0338 | 2.2525 | -0.0536 | 0.0339 | 2.2549 | -0.0874 | 0.0325 | 2.2068 [ -0.0527 | 0.0348 | 2.2859
200 -0.0545 | 0.0252 | 2.2444 | -0.0544 | 0.0253 | 2.2476 | -0.0894 | 0.0243 | 2.2040 | -0.0548 | 0.0259 | 2.2740
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Thl. 2 gives an excerpt of the corresponding results for the three other tessellation
models, SVT, HVT and CVT. Even in the case of more regular and more irregular
tessellations, the simulation study revealed only small biases (far less than 10 %). The
intensity 7 was underestimated there.

On the whole, #p seems to be very appropriate for the estimation of the parameter 7 of
a spatial Voronoi tessellation, even if the generating germ process is unknown and could

slightly differ from a Poisson point process.
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