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ABSTRACT

Morphological image segmentation is based on MISP (Morphological Image Segmentation
Paradigm), due to S. Beucher and F. Meyer. Its central operation is the watershed. The
paradigm itself is a complex transformation with two inputs, namely the function f to be
segmented and the set M of markers, and one output, namely the (binary) contours of the
segmentation.

The input functions may be scalar, or vectorial ones (e.g. colour images). They are defined in
one, two or three dimensions, over Euclidean spaces, regular grids, or irregular graphs. The
two inputs f and M interact via the swamping operation. The swamping of function f with
respect to set M is the lower over-estimation of f whose minima coincide with the connected
components of M. It is obtained by a procedure of reconstruction closing. Hence the
techniques of morphological connected filtering intervene in the paradigm. As a matter of fact
they are often also used prior to the MISP for filtering the function under study.

A first pedagogical example is given, it shows the successive steps of the paradigm. It is
followed by two original algorithms applied to already known images.
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1. INTRODUCTION

In image processing, one says that an image is segmented when its support has been
partitioned. In this sense, any thresholding creates a segmentation. By describing a
segmentation as morphological, we mean that it basically involves min, max and inequality
operations (of course, this toolbox is not exclusive: it is never forbidden to perform a
subtraction or a moving average...). In this sense, the thresholding, again, turns out to be a
morphological segmentation, since it is exclusively based upon inequalities.

However, historically speaking, the theoreticians and the practitioners of Mathematical
Morphology oriented their efforts to segment and label images in a quite specific direction,
which today delineates a certain body of operations, of know-how, and of theorems. It is this
corpus that I would like to survey here, by focusing on the operators, and their meanings,
rather than on their implementations or their theory on continuous spaces.
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The watershed transformation appeared in our field in 1976, in the framework of a study about
road surfaces. H. Digabel and C. Lantuejoul introduced the morphological notion of a
catchment basin as a geometric substitute for the physical spreading of a cone of sand (in road
technology this technique is a classical roughness descriptor). They presented their algorithm
in the 2nd European Congress for Stereology (1978).

The next important step, due to S. Beucher and C. Lantuejoul (1979), was the idea to
transpose the roughness descriptor to grey-tone functions and to try to segment them by
acting on their gradients. Then a third and crucial moment came with the disjunction between
markers and minima by the swamping operator (S. Beucher, 1982). In the meantime, F. Meyer

also introduced the changing of homotopy on gradient functions, but by means of perceptual .

graphs (1982) or of conditional bisectors, yielding performant segmentation on biological cells
(1980).

Whereas since 1982 all operations for morphological segmentation were known, and available,
the technique did not expand until 1990. The ideas were probably too new and their
implementation too slow. It seems that the Centre de Morphologie Mathématique was the
only place where watersheds were used in practice, for 2D or 3D, still of moving, imagery.
The situation changed in 1990, under the publication of two synthetic texts (S. Beucher,
1990 ; S. Beucher and F. Meyer, 1990), and the algorithmic improvements, mainly due to L.
Vincent, P. Soille (1990), and F. Meyer (1991). The two synthetic papers revived the interest
for the technique, with new domains of applications, such as image coding (P. Salembier, J.
Serra, 1992), J. Crespo, J. Serra and R. W. Schafer (1995), also reactivated the theory, with
the contributions of L. Najman, M: Schmitt (1994) and F. Meyer (1994), among others.

2. BEUCHER AND MEYER PARADIGM

What is usually understood by "Morphological Segmentation” is a technique based upon a
paradigm from S.Beucher and F.Meyer, called MISP (for Morphological Image Segmentation
Paradigm). This notion combines the two transformations of a swamping and of a watershed.
We will first introduce here these two transformations and will continue with their
combination.

2.1. Swamping
Opening by reconstruction

The swamping transformation acts on greytone images, that are modelled as numerical
functions. More precisely, the definition space E of these images is supposed metric and
equipped with a connectivity (in the morphological sense, see (Serra, 1988, ch. 2)). This
covers Euclidean spaces, all usual digital spaces, as well as planar graphs. We will be more
restrictive for the arrival space J, that we suppose discrete. J is the finite or numerable
sequence {0, 1, .., j .. j,}. The price to pay for a continuous grey-axis would be
mathematically higher, and indeed irrelevant here, since we are looking for segmentation of
digital images.

Let F : E =7 be the class of numerical functions from E into J. With every function f € F ,
associate its cross section X; (f) at level j € J, i.e. :

Xi(f)={x:x€ E fx) 2}
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Given a function g € F, we now introduce the opening by reconstruction y_(f ; g) of f with
respect to g, via its cross sections. The section X; [y,.(f; 8)] is defined as the union of all those
connected components of X; (f) which contain at least one point of X; (g) ; see (fig.1).

Fig. 1. Openings by reconstruction of function f according to marker g.

Proposition 1 : Given g €F, the operation vy , (f; g), f€ F, isan opening ; on the
contrary, when f is fixed and g becomes variable, with g < f, the same operation turns out to
be a closing.

[Easy proof, already given in (Serra, 1982, ch. XII), among others]

The major properties of the openings by reconstruction concern the ways the maxima are
treated. (A maximum of f is a connected component G, (f) of the section X; (f) such that
GO NX,, O= @. It is a subset of E, whose associated grey level has value j).

The first property of y_, that involves maxima is related to its Domain of Invariance. When
function g admits n maxima (M,, j)),i=1 ... n, then Y...(f; g) =f for all functions f € F, which
have n maxima (Z,, j;) such that Z, N M, # @ for all i.

Similarly, we can state the two following properties :

Proposition 2 : Given g € F for all f € F, each maximum of the opening y | (f:g)
contains at least one maximum of f and another one of inf (f. g ) = f/\ g. A maximum M off
is preserved if and only if g(x) 2 f(x) for at least one x € M.

Proof : For the first part, remark that every maximum of X [v.(f ; )] is always also a
connected component X; (f) ; moreover, since it is a maximum, it is generated from a
maximum section of f A g. As for the second part, if g(x) > f(x), then g marks the maximum
M ; conversely, if M, of value j, is preserved, then there exists an x € E such that x € X(g)
that marks M. But M is a maximum for f, hence we have g(x) > fx). QE.D.

In other words, under v, , some maxima of f are grouped around those of f A g and the others
are removed (and replaced by stairs). In this simplification process, no maximum which would
not contain a former one can be generated. Finally, the only way to leave unchanged, at the
same level, a maximum of f'is that g (partly) covers it.
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Proposition 3 : When the set of maxima of f/\ g is a subset of those of f, theny  (f ;g is
the largest function

- to be smaller than f

- to have the maxima of fA\ g.

Proof : Suppose that there exists f' such that y_(f; g) < f'< f, then y_(f; 8) = 1...(f"; 8), since
Y. is an opening. But the maxima of £ /A g are also those of f ' A g, hence v, (f'; g) ="
Q.ED.

Closing by reconstruction

The opening by reconstruction admits a dual closing, for the duality generated by the inversion
f—j, -, where j_ is the maximum grey value.Mutatis mutandis, the above propositions
remain valid, but now concern the minima. The swamping is an operation designed to impose
a set M of minima to the function f under study, so that the result be as closed as possible to
the original function f What we have seen previously suggests the following procedure :

Definition : Let M = {M,, i € I} the union of disjoint connected components M, . Denote by g
the function

g(x)=0 xeM

g =j, x¢M

Then the closing by reconstruction @
to marker M.

(f: & of f by g is called the swamping of f according

rec

Of course, to be relevant, the technique requires that every M, hits one minimum of f. These
marked minima will then be the only ones to be kept by @_. (f; g) (see fig. 2)

Markers M

2] Swamping " of f by M

Fig. 2. Example of swamping. This operation modifies the homotopy of the function (and of its section), and
fills up the zones around the minima to be suppressed until they become plateaus.

2.2. Watershed
Physical definition

The watershed transformation for greytone images was introduced a long time ago in
mathematical morphology (Beucher and Lantuejoul, 1979) ; we will only describe it briefly.
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Interpret the image under study as a relief, where the grey values are altitudes (the lighter, the
higher). Imagine that, at each minimum, we bore a hole, down to level zero. Then we
gradually immerse the relief into water so that the surface is gradually flooded from the bore
holes. Since we want to access each catchment basin separately, we must avoid the confluence
between floods which arise from different minima. Therefore, we build a dam as soon as two
floods locally merge. The process ends when the dams are completed everywhere (see fig. 3).
They form, on the relief, what geographers call divide lines. The projections of these lines on
E are the watersheds and the complement of the latter is the union of the catchment basins.

Calchment basins

\~7
AMinima

Walersheds

Fig. 3 : Example of regional minima, catchment basins and divide lines

The watersheds draw closed loops over E. Their interest for segmentation purposes comes, to
a large extent, from this property. However, the loop may exhibit some thickness, in particular
because of the ambiguous status of the flat zones. In fig. 4, for example, the watershed is the
projection

Fig. 4 : Example of an ambiguous case : is the divide line the whole plateau ?

of the whole plateau. The ambiguity will be removed if we are able to give a criterion of
priority to the different holes, in the plateau which surrounds them. The simplest one, and also
the most physically pertinent, is provided here by the distance function : each point x of the
plateau should be directed to its closest hole.

Moreover, by so doing, we have designed the very algorithm to flood the space and to put the
dam, level after level.
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Flooding algorithm

The set C(f) of the catchment basins and its complement W(f), i.e. the watersheds, will be
obtained recursively from the set M of the minima. Firstly, we observe that no change will
occur in the result if we impose value zero to all the minima. This done, we now apply
recursively the binary thickening ©(X,Y) with X € Y, which produces the complement of the
geodesic skiz (skeleton by influence zones) of X in Y.The algorithm reads as follows:

initialization C, (f) =M = X;(f)
step n°l C, (0 =uCy X7)

step n° i Ci(h) =+C, ; X7)

i

final C) = Cpl) =¥(C,,, : X)) and W() = C()

Remark that C, is the part of the final catchment basins where the altitudes are < i, and
similarly that W, = X/C; is the part of the watershed associated to divides lower than altitude
i. Hence the algorithm, just as the physical explanation, constructs the dams progressively !

MISP paradigm

In his thesis (1990) (a splendid monument erected to morphological segmentation), Serge
Beucher bases a general formalism for segmentation on the two operations of swamping and
of watershed. This paradigm, that we reproduce in fig. 5, comprises three moments. First,

e AN BN R "clever"
one,or iiore, input image part
U
Markers Function
M f
[ [
AN y A

automatic
segmentation

watersheds of '

eventual hierarchy
(with endogen or exogen marking)

Fig. 5 : S. Beucher and Meyer Paradigm for segmentation

one has to generate one greyfone image f and one set of markers M from the input
information. This implies possible filtering, interactivity, condensation of information (e.g. for
colour images), etc. Then, a second step arises, which is purely automatic. It consists in
modifying the homotopy of f by swamping this function according to marker M. This results in
a function f' which is in turn transformed by watershed, which ends the second step. The
segmentation may stop here. Alternatively, we can add new external information, or also come
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back to the first phase and use the watershed itself to produce a new marking. Such a dialectic
approach generates a hierarchy of coarser and coarser watersheds, but often more and more
significant.

3. HOW TO CHOOSE MARKERS FOR SEGMENTATION

In the previous section, we have explained in detail the second phase, i.e. the automatic one,
of S. Beucher's Paradigm. We would like now to describe the whole process. Unfortunately, it
is impossible to do it in a purely deductive way. There is no such thing as an automatic black
box that would segment correctly every image. Therefore, we propose to go through a few
typical examples, and to show techniques of a rather general use, by means of particular
situations.

3.1, Electrophoresis gel

A basic situation is that of more or less separated objects which emerge from a background. Tt
is typically illustrated by the spots in an electrophoresis gel ( 6a). In addition, it is historically
the first example of the whole segmentation paradigm (Beucher, 1982). We want, here, to
contour the spots and to tell which neighbours they have Firstly, we observe, in fig. 6b, the
incrdible number of minima of fig 6

figure 6a figure 6b
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i/ Therefore the row watershed of the gel is just unreadable ( 6¢). In an image there are much
more minima than those detected by a human eye.

figure 6e figure 6f

i/ fig 6d is the watershed of the transform of 6a after a small alternated filter. One can
control the reduction, and the pertinence, of the minima on figure 6e

iii/ the swamping of grad(f) according to the watershed 6d and the associated minima
is presented in figure 6e. (Indeed, the contours of the spots correspond to the watershed of
their gradient image, since the inflection points (i.e. the contours) turn out to appear as crest
lines in the gradient image).

iv/ The watershed of the swamped gradient 6e appears in figure 6f.
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Conclusion : we have seen an iterated version of the paradigm, where a first watershed is
introduced as the background marker for a second watershed. We have also seen that
contouring objects requires the watershed of their gradient, the function itself giving rather
their zones of influence.

3.2. Nuclei in a smear

figure 7a figure 7b

The example is a variant of a classical algorithm due to F. Meyer (1980), for automatic
segmentation of nuclei, in cervical smears. Once more, the major problem concerns the
elaboration of a pertinent marker. Starting from the initial scene of fig.7a, the gradient of
which is shown in fig 7b, we will proceed by the following steps:

i/ imperfect threshold, the goal of which is to select dark zones in each nucleus, and
only there. The threshold set is used to swamp the initial image, as shown in fig. 7c;

figure 7c figure 7d
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ii/ fig 7c, after a small dilation, serves as amarker to swamp the initial image 7a. The
resultins watershed is presented in fig. 7d;

iii/ by filling the holes of fig. 7d and then slightly eroding it, we obtain fig. 7e;
iv/ the outer marker for rhe gradient image is now provided by the skiz of fig. 7e, that we

see in fig. 7f, in superimposition with fig. 7e itself (alternately, we could also re-swamp and
re-watershed the initial image;

figure 7e figure 7f

v/ the last steps are identical to steps iii/ to v/ of the previous example, on electrophoresis.
The gradient fig.7b is swamped according to set fig. 7f , which results in fig. 7g . The
watershed of the latter, shown in fig 7h, provides the required contours of the nuclei.

figure 7g figure 7h

Conclusion : a first watershed is often used as , after simplifications, part of the marker.
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3.3. WC-Co microstructures

The micrograph of fig. 8a is extracted from the PhD thesis of G. Gauthier, (1995, Laboratory
of Professors Coster and Chermant, Univ. Caen, France). The segmentation we propose
below is different from Gauthier's one, a bit less performing, but more pedagogic. It is based
on the assumption that the shape of the material, i.e. the thresholding of fig.8a at a low level,
already contains enough information to allow a reasonable first segmentation. The steps are
the following :

figure 8a figure 8b

i/ After thresholding the initial image (see in fig. 8c), we calculate the corresponding
distance function (fig. 8b).

ii/ the watershed of the negative of the distance function is given in fig. 8c, in
superimposition with the low threshold section. The intersection of these two sets

figure 8¢ figure 8d
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defines the zone to be supressed from the initial image.

iii/ the result of the segmentation is shown in figure 8d :

Improvment: Clearly, such a segmentation ignores the grey variations inside the
grains.However we may introduce this additional information by binarizing the gradient of
image 8a (low threshold) and substracting it from the binary version of the grains, i.e. from the
greys of figure 8c. We obtain the greys of figure 8e, whose watershed of the distance function
appears, in superimposition, in white. By removing from the initial image the white and the
black zones of figure 8e, we yield the new segmentation 8f, which is more satisfactory.

figure 8¢

Conclusion : Even for grey images, the shape based segmentation is often a sufficient fist
step, and it can be improved by gradient information. In addition, the distance functions
particularly lend themselves to good morphological filtering.
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