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CLIMATOLOGICAL CHARACTERISTICS OF NDVI TIME SERIES: 
CHALLENGES AND CONSTRAINTS

Stéphanie Horion1*, Bernard Tychon2 and Yves Cornet3

Abstract
Many studies already investigated the impact of climate change and climate variability on vegetation at global 
and continental scales. Low resolution satellite imagery is one of the main sources of information. In this paper, 
we describe a strategy to improve the quality of 10-daily time series of Normalized Difference Vegetation Index 
derived from SPOT-VEGETATION. A specifi c methodology was also defi ned in order to identify optimal test 
sites for the analysis of climate control on intra-annual dynamic of croplands. Finally two cases studies are pre-
sented to illustrate this research and in particular the non linear relationship between NDVI and meteorological 
parameters during the growing season.
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Résumé
L’impact du changement climatique sur la végétation a déjà fait l’objet de nombreuses études à l’échelle 
continentale. L’imagerie satellitaire basse résolution est une importante source d’information pour ce genre 
d’étude. Cet article présente une méthodologie mise en place afi n de maximiser l’information extraite de séries 
temporelles de l’indice normalisé de végétation (synthèses de 10 jours) pour l’analyse de l’impact de la varia-
bilité climatique sur les cultures. La sélection des sites d’étude a également fait l’objet d’une grande attention 
afi n de minimiser les facteurs perturbateurs du signal satellitaire autres que le climat. Pour terminer, deux cas 
d’étude seront présentés : le cas de la région d’Amhara en Ethiopie et celui de la Picardie en France.

Mots-clés
Dynamique de la végétation, variabilité climatique, image satellitaire basse résolution, géostatistique, analyse 
de séries temporelles

INTRODUCTION1. 

Many studies already investigated the impact of cli-
mate change and climate variability on vegetation at 
global and continental scales. Using time series of re-
mote sensing and climate data, Nemani et al. (2003) 
analysed trends in Net Primary Production in relation 
with changes in climate and showed that, between 1982 
and 1999, primary productivity increased by 6% glo-
bally in response to climate change. This study also 
stressed the need to take into account the spatial varia-
bility of climatic constraints on plant growth when ana-
lysing the climate change impact on vegetation. Others 
authors described different phenomena linked with cli-
mate change, such as increases of seasonal Normalized 
Difference Vegetation Index amplitude and of growing 
season duration in the Northern high latitudes (Myneni 
et al., 1998) or changes in circumpolar photosynthetic 
activities (Bunn et al., 2005). 
Understanding the interactions between climate and 

vegetation is also a key issue in the PhD research of the 
main author (S. Horion) of this article. However, unlike 
other studies, we do not consider the vegetation glo-
bally but we focus on two specifi c types of vegetation: 
croplands and grasslands. One of our main objectives is 
to identify the meteorological factors that limit the de-
velopment of croplands and grasslands in relation with 
their geographical localisation. 
Because they provide both spatial and temporal data in 
large amount, low resolution satellites are customarily 
used as primary source of information on vegetation 
status and on meteorological conditions. However their 
coarse spatial resolution is greatly limiting their poten-
tial use. Indeed many vegetation types, land covers or 
natural processes can co-exist in a 1 km2 pixel. 
In this paper, we describe our strategy to improve the 
quality of 10-daily time series of Normalized Difference 
Vegetation Index derived from SPOT-VEGETATION. 
A specifi c methodology was also defi ned in order to 
identify optimal test sites for our research. Finally two 
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it for time series analysis, it went through a 3-steps pro-
cedure during which pixel values were aggregated to 
administrative entities (fi g. 1a).
The fi rst step is the pre-processing of raw images, i.e. 
geometric and atmospheric corrections and the compu-
tation of ten-days synthesis images, carried out by the 
Image Processing and Archiving Centre (CTIV, Mol) 
(Passot, 2000). 
The next step is the computation of the NDVI regional 
unmixed statistics. Within a given region (fi g.1a), pixels 
covered totally by cropland are used for the calcula-
tion of the regional NDVI mean and standard deviation 
(Eerens et al., 2004; Genovese et al., 2001) (fi g. 2). As 
reference for the land cover types, we used the Global 
Land Cover 2000 (Bartholomé et al., 2005; Mayaux et 
al., 2006) generalized in 6 classes at the original 1 km2 
resolution, GLC2000-6C (fi g. 1b). This aggregation 
step is really important as it allows us to focus on a cer-
tain type of vegetation with a specifi c phenology. 
Finally the last processing step is the temporal smoo-
thing of the time series. During this step residual noise 
due to mainly undetected cloud/snow is fi ltered out. 

cases studies are presented to illustrate the non linear 
relationship between NDVI and meteorological para-
meters during the growing season.

DATA2. 

Remote sensing Normalized Difference Vegeta-2.1. 
tion Index

The Normalized Difference Vegetation Index (NDVI) 
is widely used as a proxy of the vegetation status and 
health. It has proven its effi ciency in many research 
fi elds such as the monitoring of land cover changes and 
land degradation (Lambin et al., 2001 ; Lambin, 2000), 
the crop growth monitoring and yield forecasting (Ba-
laghi et al., 2008 ;  Zhang et al., 2005), the study of 
vegetation phenology and its evolution over time (Whi-
te et al., 2006 ; Verstraete et al., 2007), the interaction 
between climate and vegetation (Yu et al., 2003 ; Vogt 
et al., 2000 ; White et al., 1997) and more specifi cally 
the impact of climate change on vegetation (Nemani et 
al., 2003 ; Zhou et al. 2001 ; White et al., 2005 ; Bunn 
et al., 2005 ; Myneni et al., 1998).
The NDVI is derived from the red and the near infrared 
bands following the equation:

NDVI =  (NIR - RED)              (eq. 1)
                             (RED + NIR)
Where NIR and RED are the amount of near infrared 
and red light refl ected by the spectral object and recor-
ded by the sensor (here: VEGETATION 1 and 2 sen-
sors). This index ranges from -1 to +1 and relies on the 
absorption in the red part of the light spectrum due to 
the chlorophyll contained in the leaves, and on the scat-
tering of the NIR by the mesophyll cells of the leaves. 
The more green and turgescent are the leaves, the closer 
to 1 is the NDVI. A null value represents more or less 
the threshold between the presence and the absence of 
vegetation.
For our research, ten years of 10-daily SPOT-VEGE-
TATION NDVI were acquired from April 1998 till May 
2008 for the entire globe. The original image data set 
has a spatial resolution of 1 km². However, before using 

Figure 1. (left) Administrative layer: countries and regions, (right) Global Land Cover 2000, with legend simplifi ed to 6 classes.

Figure 2. Regional unmixed mean. In dark green, pixels con-
sidered to calculate the regional statistics.

Global meteorological data set2.2. 

The global meteorological dataset used in this study 
has been acquired freely through the FOODSEC por-
tal of the Joint Research Centre (http://cidportal.jrc.
ec.europa.eu/home/idp/thematic-portals/foodsec-im-
ageserver/). Out of the twelve indicators available, six 
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were downloaded for this study (table 1). A seventh in-
dicator was computed using the precipitation and the 
potential evapotranspiration. It corresponds to a proxy 
of the climatic water balance. Time series are composed 
by 10-daily global images at 0.5 degree resolution. They 
are derived from 2 different sources, (1) the ERA40 re-
analyses (Uppala et al., 2005) for the period starting in 
January 1990 till August 2002 and (2) the operational 

ECMWF (European Centre for Medium-Range Weath-
er Forecast) atmospheric model for the period from Sep-
tember 2002 till May 2008. Regional statistics of the 7 
meteorological indicators were also extracted per admin-
istrative region following a similar procedure than for the 
NDVI images, i.e. they were calculated using strictly the 
values of grid cells covered totally by agricultural areas 
in the GLC2000-6C (fi g. 1b).  

Table 1. 10-daily meteorological indicators.

Indicator Unit Abbreviation
Minimum temperature

Maximum temperature

Mean temperature

Cumulated precipitation

Cumulated potential evapotranspiration 

Cumulated global radiation 

Climatic water balance

°C

°C

°C

mm

mm

KJ/m2*day

mm

Tmin

Tmax

Tmean

Rain

ET0

Rg

P-ETP

SITE SELECTION3. 

Optimal test sites for the modelling of vegetation-cli-
mate interactions using the NDVI should ideally cor-
respond to regions where the major part of the signal 
variation can be attributed to the climate and not to 
other phenomena such as land cover changes. For this 
reason our set of study cases has been established using 
a group of criteria which describe the spatial and tem-
poral heterogeneities of the land covers and of the si-
gnal retrieved by the sensor (Horion et al., 2007). The 
criteria and their implementation strategies are defi ned 
hereafter.

 Spatial heterogeneity of land covers3.1. 

The spatial heterogeneity introduced by the occurrence 
of different land covers in a region is evaluated with 
2 different indices, the Relative Area and the Frag-
mentation index, both extracted from the generalized 
GLC2000-6C. The relative area is calculated for each 
land cover class existing in the administrative regions 
and gives information on the relative importance of land 
covers within the region. This indicator is important to 
assess the reliability of the regional NDVI statistics. In-
deed the unmixing process used for the extraction of 
these statistics already improves the quality of the da-
taset by considering only pixels completely covered by 
croplands. But the regional statistics might nevertheless 
not be reliable or representative of the regional vegeta-
tion state if they are derived from too few pixels. 
The Fragmentation index refers to the spatial pattern 
in the surroundings of a pixel (3x3 window) (Eq. 2). 
The overall fragmentation of a region is evaluated by 

averaging the Fr values of each pixel contained in that 
region. 

Fr = (cr - 1)                           (eq. 2)
               (nr - 1)
Where cr is the number of different classes observed in 
a 3x3 window and nr is the number of cells in the kernel 
(always 9 cells in this case).

Temporal heterogeneity of land covers (or land 3.2. 
cover changes)

MODIS Land Cover products, MODIS LC, have been 
acquired in order to evaluate the error introduced by the 
use of a static land-cover map such as the GLC2000. 
These products are computed annually at a 1-km² re-
solution (Friedl et al., 2002). The temporal trajectory 
of each pixel evaluated with MODIS LC for the period 
2001-2004 is analyzed in order to identify land cover 
changes. Aberrant behaviours are identifi ed using sim-
ple logical rules and such pixels are excluded from the 
land cover change analysis. A temporal trajectory is 
considered as aberrant or incoherent if one of the fol-
lowing rules is not respected: (1) a maximum of two 
land cover changes is acceptable in the temporal trajec-
tory of the pixel; (2) the ‘Shrublands’ class is the only 
accepted phase prior to ‘Forest’; (3) pixels with a tem-
poral trajectory oscillating between water and another 
class are removed.

Spatial heterogeneity of the signal recorded by 3.3. 
the sensor

The Coeffi cient of Variation CV measures the relative 
dispersion of a variable (Eq. 3). It is used here to esti-
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mate how much the spectral signature of croplands is 
varying inside a same region.
                                                      

d
CVr = 1 Σ (  

Stdr  )                   (eq. 3)
                                       d i=1  Meanr

Where Stdr and Meanr are the standard deviation and 
average values calculated using the NDVI values of 
pixels covered by cropland and pertaining to region r. 
d is the 10-daily period (decade). The fi nal CVr corres-
ponds to the average of all 10-daily CVr,d.

RESULTS AND DISCUSSION4. 

Optimal test sites for croplands4.1. 

The analysis of the indicators presented in the previous 
section allowed us to identify candidate regions for our 
research. Figure 3a presents the relative area (RA) of cro-
pland for our area of interest which comprises Europe and 
the part of Africa situated in the Northern Hemisphere. 
In Europe, regions mostly dominated by croplands (RA 
> 60%) are quite numerous and spread over the entire 
area, notably in northern France, in Germany, in Poland, 
in Ukraine and in Spain. By contrast, in Africa, they are 
more concentrated on the Sahelian belt.

Like the relative area, the annual Fragmentation index 
per region Fr is also a good indicator of the spatial he-
terogeneity caused by mixed land covers. Most regions 
in our area of interest present a very low level of frag-
mentation, with Fr equal or below 0.125, meaning that 
in the 3x3 kernel (9 km2) only two different land covers 
are observed in average (fi g. 3b).
The temporal trajectories of the MODIS LC images 
from 2001 to 2004 have been analyzed to identify in-
coherencies and to locate the pixels where land cover 
changes occurred from 2001 to 2004. The identifi cation 
of stable regions is crucial as we are working on the 
response of vegetation to climatic events. Using regions 
with a high land cover change dynamic or incoherent 
changes would affect our analysis by introducing ex-
tra-variability in the vegetation response retrieved from 
the sensor. Croplands are probably the most stable land 
cover in Europe, followed by the forest (fi g.3c). The 
agricultural regions of France (Nord Pas-de-Calais, Pi-
cardie, Ile de France, etc) have recorded few land cover 
changes as well as the Pô region, the Garonne plain and 
Ukraine. On the contrary, regions with prevailing cro-
pland stability are almost absent in Africa. Indeed land 
cover changes are important especially in the cropland 
and shrubland areas. Very few African regions can be 

Figure 3. (top left) Relative Area of cropland derived from GLC2000, (top right) Spatial fragmentation of land covers, (bottom left) 
Land cover changes between 2001 and 2004, (bottom right) Coeffi cient of variation of NDVI for cropland (in grey, no data).
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Figure 4. (left) Region of Amhara, Ethiopia; (right) Region of Picardie, France.

selected as potential agricultural regions for our study. 
The coeffi cient of variation is globally low (CV < 0.2), 
except in some areas in the Middle East and in Egypt 
(fi g.3d). This suggests that the signal recorded at the 
sensor for the pixels covered by croplands can be consi-
dered homogeneous at the region scale.

Two cases studies4.2. 

After evaluation of the preceding results, 15 regions were 
selected as test cases for our research, 10 in Europe and 5 
in Africa. In this section we present two test cases, one in 
Ethiopia (fi g.4a) and one in France (fi g.4b). 
The fi rst case study corresponds to the region of Amhara 
in the Northern highlands of Ethiopia. Its size is about 
165,000 km2, of which more than 70 % are covered by 
cropland. The Coeffi cient of Variation of NDVI for cro-
pland and the land cover fragmentation are both quite 
small (CVr = 0.22; Fr = 0.01). However the percentage 
of stable cropland is rather low (about 11 %) and in-
coherent changes recorded between 2001 and 2004 by 
the MODIS Land Covers are important (12 %). Figure 
5 (left) shows the typical landscape of Amhara. The 
agricultural fi elds are quite small (between 50 and 100 
m in length) and mainly located on the plateau areas. 

These observations and the importance of the relief in 
this area can explain the relatively high score for inco-
herent changes.
      The second case corresponds to the region of Picar-
die in northern France. Its size is about 20,000km2, of 
which more than 85 % are covered by stable croplands. 
The medium fi eld size, much bigger than in Amhara, 
is about 500x100 m (fi g.5b). Incoherent changes are 
negligible (< 2 % of the total area) and CVr is also re-
ally low (~0.11), which indicates that the NDVI values 
recorded for all VEGETATION pixels covered by crop-
land in the region are similar.
Figure 6 presents the 10-daily evolution of NDVI for 
the two case studies in parallel with the 10-daily evol-
ution of a limiting meteorological factor: 10-daily cu-
mulated rainfall in the case of Amhara and mean tem-
perature in the case of Picardie. The seasonality linked 
to the growing cycle of plants is obvious in both cases. 
In Ethiopia, a double crop cycle can be observed: from 
April to May-June (Bleg season) and from July to Octo-
ber (Meher season). In Picardie, the NDVI green-up is 
generally observed in March and the end of the growing 
season in October. The identifi cation of a double crop 
season is less clear even though a small increase of the 
NDVI is often observed in August-September. 

Figure 5. Google Earth sample images taken in the Amhara region (left) and in Picardie (right), with an identical scale.
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A good correlation between the NDVI cycle and the 
limiting meteorological parameter is also recorded in 
both regions. In Amhara, the rainfall increase precedes 
that of NDVI while in Picardie, cycles of NDVI and 
mean temperature are shifted in the opposite way. Scat-
terplots between NDVI and the limiting meteorological 
parameter show also interesting results regarding the 
type of relation between both variables (fi g. 7a and 
7b). We see clearly that fi tting a linear regression line 
on the cloud of points is not a good solution. This de-
monstrates that a meteorological factor does not have 
the same impact on the NDVI evolution throughout the 
year and even through the growing season. In order to 
fi nd statistically signifi cant linear relation which is also 
meaningful from an agro-meteorological point of view, 
we need to split the growing season into separate (phe-
nological) phases. For example, in the case of Picardie, 
a good linear relation can be found between March and 
June (R² = 0.65), which corresponds respectively to the 
greening phase and to the beginning of the maturing 
process for winter crops (USGS crop calendar, http://

www.usda.gov/oce/weather/CropCalendars/index.htm, 
consulted in December 2009). 
Following those preliminary results, a detailed investi-
gation of interrelations between meteorological events 
and the vegetation response is currently undergone with 
specifi c focuses on (1) identifying key phenological 
stages within the growing season, (2) considering the 
cumulated impact of meteorological events (e.g. rain-
fall defi cit during several decades, heat wave, etc) and 
(3) considering the possibility of a delayed response of 
vegetation.

CONCLUSION AND PERSPECTIVES5. 

We have presented here some results of the PhD re-
search of S. Horion concerning the impact of climate 
on croplands using two low resolution global datasets, 
respectively 10-daily NDVI estimated for cropland and 
10-daily meteorological parameters combining ERA-
40 and ECMWF data (table 1). 
A specifi c strategy was set up to improve these data-
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Figure 6. 10-daily evolution of NDVI for cropland compared (top) with evolution of 10-
daily cumulated rainfall in Amhara (Ethiopia) and (bottom) with evolution of 10-daily 
mean temperature in Picardie (France).
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sets and to focus only on agricultural areas. The Global 
Land Cover 2000 was used to identify VEGETATION 
pixels completely covered by cropland. These pixels 
were then used to compute regional statistics of NDVI 
and meteorological parameters.
The next step was the selection of optimal test cases 
for the analysis of climate control on croplands. Ideally, 
NDVI seasonal signal of such regions should be main-
ly infl uenced by the variation of meteorological para-
meters. Therefore regions with high fragmentation in 
landscapes, high land cover change dynamics and high 
spatial variation of NDVI with respect to the mean si-
gnal were excluded. The fi nal choice was based on the 
percentage of stable cropland cover.
Further work will be dedicated to the analysis of cross-
correlations between the monthly NDVI and the 7 
meteorological parameters. As the two case studies 
showed, interactions between meteorological param-
eters and NDVI can not be modelled using a simple 
linear regression over the year or the growing season. 
Indeed they need to be studied at a time scale smaller 
than the growing season in order to identify properly 
the limiting factors on plant growth. Like the limiting 
factors, which are variable from a region to another, 
the time scale for the analysis needs also to be adjusted 
for each region, taking into account the phenology of 
the vegetation under consideration. Moreover, we also 
considered in our analysis the possibility of a delayed 
response of the vegetation and/or a cumulated effect of 
meteorological events (up to 3 months).
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